Check out our innovative home and kitchen tools to make cooking and beverages more enjoyable

Style Switcher

Predefined Colors

Age is no barrier: meet the world’s oldest top athletes

Richard Godwin catches up with five pensioners, aged up to 108, who thrive on extreme exercise

Edwina Brocklesby: triathlete, 76, Kingston-upon-Thames

I didnt do any exercise at all until I was 50. I remember trying out for the long-jump team at university for a laugh and I couldnt move for two weeks afterwards. So that was the end of my athletics career. And then I had three children and I was busy with my job. I was a social worker and ran two adoption agencies.

One day, I went to see an old friend from Nottingham University who was running a marathon. I thought that would be fun to do, at least a half marathon, anyway. I came back and told my husband and he laughed and said I wouldnt even be able to run as far as Northampton, which was about three miles from where we lived at the time. Its good to have a challenge like that! Sure enough, it did inspire me to run my first half marathon.

Then my husband died when I was 52. By then I had a small group of running friends and they were brilliantly supportive. I trained as a counsellor myself, but I found running better than counselling for dealing with grief. For one, you always feel better after youve been for a run as the endorphins kick in. But I think what is more important is the social element. Youre with people who support you and value you. You can talk if you want to, or you can be silent if you want to.

The running club was only small, but it did have one place in the London Marathon and thats when it became more serious for me. I ran my first marathon in 1996, when I was 53. I moved to London and became a member of the Serpentine Running Club and, with them, I completed my first London Triathlon when I was 58. I dont have an anterior cruciate ligament in either knee my daughter told me that Id need surgery if I kept pounding the streets like I used to and thats how I got into cycling and swimming as theyre a little easier on the joints. When I started swimming, at 56, I couldnt do crawl at all and swam breaststroke with my head above water like most women of my age. But swimming is a wonderful feeling. It might have something to do with our spending the first nine months of our gestation suspended in water.

Theres so much evidence that if you keep physically active, you dont experience some of the difficulties associated with ageing. There are lower rates of type 2 diabetes among the active, but falling over is the biggest thing. If you can keep your bone and muscle strength up, youre less likely to fall and you might also be able to prevent yourself from hitting the ground if you do fall. Falls are one of the things that costs the NHS the most money.

Im getting slower as I get older, of course I am. I do manage to run 5k, but I walk a bit more. I feel lucky that I can still jog along the Thames.

Edwina Brocklesby is the director of Silverfit, a charity that promotes physical activity among ageing people. She is also the UKs oldest Ironman triathlete. She was recently awarded the British Empire Medal

Eddy Diget: personal trainer, 74, Milton Keynes

Mature people are much more aware of the goodness that can come out of training: Eddy Diget. Photograph: Pl Hansen/The Observer

Ive always trained: cross-country running; ice skating; roller skating; fencing; cycling I represented England in the Commonwealth Games in Perth 1962 in diving and swimming. Ive been doing weight training for about 45 years now and I was British bodybuilding champion twice, once at 58 and once at 68. Ive been a stuntman. I was a medical officer in the Royal Navy. And I have been recognised as a Shaolin Master for my commitment to Chinese martial arts. Some Shaolin monks turned up at my studio in Oxford Brookes one day in their saffron robes and presented me with a piece of parchment. I broke down and wept. It was such an honour.

In a way, I have my father to thank. He was an extremely aggressive man. A big man, too. He used to knock me and my mother about quite a bit. The only way I could escape from him was to be outside and thats how I discovered sport.

One day, when I was 16, I was fishing at Tooting Bec ponds when my mum came round with a black eye. She said: Joes in a real bad mood. Hes coming to find you. All of a sudden, my father came down the hill and started punching me. I think I was coming up to a brown sash in kung fu at the time and I just tore into him. It was over in seconds, 16 years of pent-up fear and hate. I blinded him in one eye, which I wasnt happy about. But after that we were the best of mates. And he was a different man. A respectful man. He never touched my mother again.

People have become more educated about being fit over the years, especially the over-50s and over-60s. Mature people are much more aware of the goodness that can come out of training.

But younger people in particular are looking for a quick fix. The personal trainers are all 10mg of this, 10mg of that. Its become too complicated. You see the same people come into the gym every day, doing the same exercises. Its so they dont have to think about it. But the more you change it, the more results youll get.

I am a rehab consultant, so I train people who have had cancer, wheelchair users, people with chronic regional pain syndrome, amputees. But I also train Ironmen, ultra-marathon runners and an Olympic fencer. It really is an extreme diversity of clients and I feel incredibly privileged and humbled to do it. Personal training is not really about the training, its much more to do with the person.

Id never been ill in 74 years, never even been inside a hospital. But last year, thanks to the NHS bowel screening programme, I learned I had bowel cancer. I went in on the 19 November at 11am and came out a 8.30pm with a whole section removed. Im pleased to say Ive never had any pain at all because of my fitness. The consultant commented on it before my surgery. He said: I dont see many people with your stamina or your outlook. But Im a fatalist. Theres nothing I can do about it. Im just pleased I caught it. And now I feel fabulous. I feel on top of the world.

Eddy Diget is a stuntman, model and personal trainer at the DW Fitness First gym in Milton Keynes

Gwyn Haslock: surfer, 73, Truro

I entered my first competition in 1965 as the only woman, and then I was the first proper British ladies champion in 1969: Gwyn Haslock in Cornwall. Photograph: Sarah Lee/The Guardian

My family always used to go to the sea when I was growing up. We all started surfing in the 1950s on the north coast of Cornwall with wooden belly boards, which are like planks of wood. Then the lifeguards started to import Malibu longboards, which were 10ft long, and before long they started making them there in Newquay. I bought a secondhand one and started properly surfing in 1965.

I wasnt what youd call a typical surfer like in the Beach Boys songs. A lot of the good surfers worked in the surfing trade, in surf shops and so on, but I worked for the council as a shorthand typist. It was very 9 to 5, but I surfed at weekends.

I just liked the sea. And when I saw people standing up as if they were walking across the water, I thought, Id like to have a go at that. It took me about a month before I could stand up and a year before I got any style. I entered my first competition in 1965 as the only woman, and was the first proper British ladies champion in 1969. But like any sport, youre always learning.

I always say to people, the most important thing with surfing is paddling. Youve got to paddle out, so you have to duck dive under the waves or push yourself over them. Then youre out the back, as we call it. Youll see a lovely wave coming, paddle for it and up you get. You need to be fit to build up the momentum and then its like floating in air, but across the wave. Sometimes its just seconds, sometimes the wave peels and it can go on and on. Sometimes at Fistral, you get nice long rides right along the beach. But the conditions are never the same and it always tests you.

Ive never seen any sharks in Cornwall. I have surfed near dolphins and you do see seals sometimes. I sprained my wrist once, but Ive never had any bad accident. I know my limits and now I wear my helmet. I want to enjoy it.

I never married. I lived with my mother until she died seven years ago, and Ive been retired for eight years now. When I was working, I couldnt go surfing in the week so much, but now I can go whenever I like, which is good as it gets busy at weekends. Back in the 60s there was a lot more water space it wasnt like now when everyones in there. I like playing tennis, too. I do a bit of fencing. Gardening. Theres lots of things to do.

Ive surfed in Wales, Ireland, France and once in Portugal. Australia and New Zealand they dont appeal to me at all. I did go to California on holiday once and we drove through Malibu and I wasnt that impressed with it to be honest. We have plenty of surf down here, why do I need to go anywhere else?

Gwyn Haslock was Britains first competitive female surfing champion

Ida Keeling: sprinter, 104, Harlem, New York

I go to the gym, ride my bike, work out, stretch, reach, do push-ups: Ida Keeling with her daughter. Photograph: Poon Watchara-Amphaiwan

I was 67 when I started running. I had lost my two sons to drug-related violence in 1978 and then in 1981. It was so quick. They were stabbed up or shot up or whatever they did to them. Too quick. No warning. It just broke me. I was very depressed.

My daughter Cheryl came by one day and saw I was down in the dumps. That isnt usually who I am. She wanted to take me out for a mini run and since I was already so down I said: All right, go ahead. And it did good for me. It kept me moving. I could feel myself getting stronger and feeling more free. It helped me immensely. And Im still running now.

I grew up in Harlem, USA, in San Juan Hill they call it Hells Kitchen now. I was one of eight children. Everybody was poor. There was already a Depression there even before they called it a Depression. But there are happy memories. Children dont have to pay rent. My dad took us to Central Park on his day off from the factory. We had a good time, looking at all the fishes swimming and doing all the things children do: run, play, jump, roll and all that type of stuff. In the summertime when it was hot, the police department would put a sprinkler on top of the fire hydrants for the children to play in.

We hung swings from the fire escapes at the back of buildings. And on Saturdays the bigger boys from around the corner would turn up with a pail and a couple of wooden spoons to drum on it and wed do the Charleston, the drag, and everything else. We played hooky from school to go and watch the Lindy Hop dancers at the Apollo. We had some good times coming from bad times. But Harlem changed when drugs came in. Everybody wanted to make this quick money. And it dragged in my sons.

I felt like I was being held in a grip, or like I was in a bag or something. But the more I ran, the faster and stronger I became. As I was running like crazy, I released the hold that death had on me. From then on, I belonged to track and field. I said, shoot, sprinting is faster. Im not going to do all this long-distance, Im going to sprint. I wanted to go as fast as I could.

Now Im 104, Im not so fast. But I go whatever distance I can and if I start a race, I finish it. Im always the winner for my age group as I dont have no competition. Im usually chasing myself. But I go with what Ive got left. I go to the gym, I ride my bike, I work out, I stretch, I reach, I do push-ups, I do upper weights, I get on the floor and turn my feet up over my head, and when I dont get out, I stay right here and work out in my room. Im as healthy as a 25-year-old, my doctor says. I have no intention of slowing down. Age aint got nothing to do with it. When you really want to do something for yourself, go and do it. And if you fail, try, try, try again.

Fauja Singh: marathon runner, 108, Redbridge

Freedom for me is being independently mobile: Fauja Singh, who ran a marathon at 89 and stills walks 5m a day. Photograph: Hindustan Times via Getty Images

I was born in a village in Punjab in India in 1911. My memories are of a simple life without the stresses that people all over the world seem to have nowadays. I came from a farming family, and we learned to live within our means after working hard and honestly. We remembered God and were thankful to him. We shared with others less fortunate than ourselves. This is in keeping with the three tenets of my Sikh religion.

I had a happy childhood and I was nurtured because I was weak. I couldnt walk until l was five. I wanted to be sporty, but until then, I lacked the strength. But I enjoyed watching all the simple sporting activities that were prevalent in the rural environment at the time. And I remember the joy all around me when I became strong enough to be able to walk.

As I never went to school, I farmed all of my working life. It was always handy to be able to run after straying cattle, but that was about as exciting as it got.

I didnt really run competitively until I arrived in England 20 years ago.

Since then I have been looked after by one of my two remaining sons this is the Asian culture where the parents are looked after by their children. I dont speak English and not being able to communicate with those whom you meet does pose problems, but a smile always helps. I am usually accompanied, but over time I have become familiar with the routes and places I visit regularly. It must be equally frustrating for those who want to communicate with me. One thing is for sure: shouting or saying things slowly does not make it easier this is what I observed from tourists visiting other countries! Being illiterate and monolingual does have its advantages I am not aware of any abuse that may be directed at me. Anyone who is different sadly suffers this in the modern world.

When I attempted to run a marathon for the first time at 89, the reactions were mixed. Some were excited to see if I could do it and wished me well, others doubted I could do it. Those who have been constant in supporting me were my coach, Harmander; my running club, Sikhs in the City; and my family.

Training was easy: I just followed the instructions of my coach without question. If it was a training run, he never let me be exhausted as he said it is good to train but not so good to strain. When it came to the race, I was simply awestruck by the support from the crowds along the route. My coach always ran alongside me and held me back from exerting myself too much in the early stages of the race. He then encouraged me to keep going later on in the race, when the going got tough. I also then started talking to God to help me get through to the finish.

I dont think I ran competitively in the true sense it was simply a case of me finishing a distance as fast as I could. My records seem to be simply a by-product of my age. Records are meant to be broken and I wish the person who breaks my records all the best. If running a marathon at my age has inspired others to not give up then I am pleased to have had a positive impact on society.

My last race was the Hong Kong 10km in 2013 when I was 101. Currently, I am not able to run as I have a hernia, but I remember fondly the feeling of freedom when I used to run not so long ago. I am just pleased that I am still mobile and independent. I still walk about five miles each day.

Freedom for me is being independently mobile, and retaining a sound mind and a positive outlook. The rest is up to God.

Fauja Singh has been awarded the British Empire Medal. He is thought to be the oldest person to complete a marathon, but as India did not issue birth certificates in 1911, the record is deemed unofficial. This interview was translated by Harmander Singh

  • Comments on this piece are premoderated to ensure discussion remains on topics raised by the writer. Please be aware there may be a short delay in comments appearing on the site.

Read more:

Read More

A Clever New Strategy for Treating Cancer, Thanks to Darwin

In October 1854, a government entomologist was inspecting some farmland outside the town of Ottawa, in northern Illinois, when he came upon a disturbing scene in a cabbage patch.

The large outer leaves of the vegetables were “literally riddled with holes, more than half their substance being eaten away.” With each step he took around the ravaged cabbages, tiny swarms of little ash-gray moths rose from the ground and flitted away. This was, it appears, the first record in the United States of the diamond­back moth, an invasive pest that in its larval form shows a fondness for cruciferous vegetables. By the late 1800s the moths were chewing through the leaves of cabbages, brussels sprouts, collards, and kale from Florida to Colorado.

To fight this invasion, farmers started bombarding their fields with primitive pesticides. This worked. Or seemed to. It killed most of the moths, but those that survived the poison reproduced, and the population bounced back stronger than ever. For decades, one pesticide after another failed as the moths evolved to withstand it. Even the grievously toxic DDT was no match for the diamondback. Beginning in the late 1950s, agriculture experts started to abandon the idea of eradication and adopted a new strategy. Farmers would leave the moths alone until their numbers exceeded a certain threshold, and only then would they deploy pesticides. Remarkably, this helped. The moths did not die out, but the pest could be managed and crop damage held in check.

When Robert Gatenby heard this history of the diamond­back moth in 2008, he immediately latched onto it. Gatenby is not a farmer nor an agronomist nor a fan of cruciferous vegetables—in fact, he deeply loathes brussels sprouts. He is a radiologist by training and heads the radiology department at the H. Lee Moffitt Cancer Center in Tampa, Florida. But unlike your typical doctor, he is also obsessed with the evolutionary principles put forth more than 150 years ago by Charles Darwin. The story of the diamondback moth appealed to Gatenby as a useful metaphor for his own project—one concerned not with crops but with cancer.

Blood in a Mosquito's Belly Could Reveal How Diseases Spread

  • Meet the Carousing, Harmonica-Playing Texan Who Just Won a Nobel for his Cancer Breakthrough

  • The Dying Scientist and His Rogue Vaccine Trial

  • Like the diamondback moth, cancer cells develop resistance to the powerful chemicals deployed to destroy them. Even if cancer therapies kill most of the cells they target, a small subset can survive, largely thanks to genetic changes that render them resistant. In advanced-stage cancer, it’s generally a matter of when, not if, the pugnacious surviving cells will become an unstoppable force. Gatenby thought this deadly outcome might be prevented. His idea was to expose a tumor to medication intermittently, rather than in a constant assault, thereby reducing the pressure on its cells to evolve resistance.

    Just as ecologists allow for a manageable population of diamondback moths to exist, Gatenby’s method would permit cancer to remain in the body as long as it doesn’t spread further. To test this idea, Gatenby got permission in 2014 to run a trial on advanced-stage prostate cancer patients at Moffitt. The patients had cancer that no longer responded to treatment; their drug-resistant cells were winning an evolutionary battle within the body, surviving an onslaught of toxic drugs where weaker cancerous cells had succumbed. The hope was that, by using a precise drug-dosing scheme developed using evolutionary principles, they could slow the rise of the mutations that would endow some cancer cells with the fitness to survive. Gatenby's name for the approach was adaptive therapy.

    One of the patients in the trial was Robert Butler, a British oil-exploration engineer who had retired in Tampa. In 2007 he was diagnosed with prostate cancer, and seven years later, after taking the drug Lupron and getting blasts of radiation, his prostate tumor had progressed to stage 4, advanced cancer. Butler did not give up, though. He tried a newly approved immunotherapy treatment—one that involved having cells from his blood sent by courier to a facility outside Atlanta, where they were mixed with a molecule that activates immune cells, and then shipped back to Florida to be injected back into him. The treatment was expensive—its sticker price can be as high as $120,000—but the threat that the cancer would progress remained.

    When Butler and his wife showed up at his oncologist’s office at the Moffitt Cancer Center in August 2014, they braced for what would come next; they had heard about invasive treatments, like radioactive seed implants. So they were intrigued when the doctor told them about Gatenby’s trial and asked if Butler wanted to participate. He would take a powerful and exceedingly expensive drug called Zytiga, but not in the scorched-earth, kill-all-the-cells fashion that is standard. Instead he would receive only as much Zytiga as was necessary to stop the cancer from growing. The idea was radical and counterintuitive. His last best shot at escaping death from his cancer was to give up on curing it.

    Knowing the modified Zytiga regimen wasn’t designed to rid him of cancer left Butler, the engineer, with a question about how the doctors would measure the success of their new treatment approach. He asked, “How do we know this stuff is working?” And one of his doctors replied, “Well, you won’t be dead.”

    In the United States we use military metaphors when we talk about cancer. We battle and we fight, and if we survive, we’re victorious. The attitude traces back in part to 1969, when the Citizens Committee for the Conquest of Cancer ran an ad in The Washington Post and The New York Times imploring the president with the words “Mr. Nixon: You can cure cancer.” The call to action helped trigger the country’s “war on cancer” with a determination that, using enough medical weaponry, the malignant foe could be obliterated.

    By the mid-1970s, however, signs were beginning to emerge that certain strategies aimed at total eradication were liable to backfire. Against this backdrop, a cancer researcher named Peter Nowell published a seminal paper in Science in 1976. Nowell conjectured that evolutionary forces drive certain cell populations in tumors to become progressively more malignant over time. The cells inside a tumor are in competition, not only with nearby healthy cells, Nowell argued, but also with each other. Nowell suggested—and later research confirmed—that certain DNA alterations grant cancer cells resistance against chemotherapy or other treatments, causing them to edge out drug-­sensitive cells through a process of natural selection.

    Nowell conveyed his ideas to his students at the University of Pennsylvania School of Medicine, sometimes smoking a cigarette as he lectured. His theories were respected but slow to catch on. He emphasized that tumors may become deadlier as they accumulate more genetic errors. It was an idea ahead of its time. Scientists back then didn’t have the technical capability to measure all the changes in the vast genomes of tumor cells. Instead, they could sequence only little tidbits of DNA at a time, and most scientists viewed cancers as the fruit of just a few genetic mutations.

    One of the medical students listening to Nowell lecture in the late 1970s happened to be a young Bob Gatenby. But Nowell’s ideas didn’t make a strong impression on him, Gatenby says; instead, what inspired him was what he witnessed in his first years as a practicing radiologist on the bloody front lines of the war on cancer.

    By the mid-1980s, Gatenby had secured a job at the Fox Chase Cancer Center in Philadelphia. At that hospital and others around the country, clinical trials were putting breast cancer patients through an extreme treatment: a combination of a potentially lethal dose of chemotherapy followed by a bone marrow transplant. The treatment was harrowing. The women had diarrhea and nausea, and some had so much lung damage they had difficulty breathing. Others experienced liver damage and weakened immune systems that left them vulnerable to serious infections. As a radiologist, Gatenby’s job was to interpret x-rays and other scans of the patients, and he saw the treatment failing. Out of more than 30,000 women with breast cancer in the US who underwent the procedure between 1985 and 1998, as many as 15 percent died from the treatment itself. “What happened was these women suffered horribly, and they weren’t cured,” Gatenby says.

    Around the same time as the breast cancer trials, the father of a colleague of Gatenby’s came to the hospital to receive an initial, aggressive round of chemotherapy for lung cancer. According to the colleague, her father arrived on a Friday with no apparent symptoms and was dead by Monday. “That event to me was very traumatizing,” Gatenby recalls, and the cause to him seemed obvious. “I couldn’t understand why you would treat someone with a fatal disease and kill them with your therapy. It just didn’t feel right to me.” During this fraught period, Gatenby’s own father died from esophageal cancer.

    Gatenby felt there must be a better way to treat cancer—to outsmart it rather than carpet-bomb it. He had studied physics in college and believed that biologists could leverage equations to capture the forces driving cancer the same way physicists use math to describe phenomena like gravity. Whereas Nowell had put forth general theories about how cancers followed evolutionary principles, Gatenby was taking a further leap: He wanted to figure out a way to describe the evolution of cancers with mathematical formulas.

    Robert Gatenby, a radiologist, saw patients suffer from intensive breast cancer treatments. He felt there must be a better way to treat cancer, to outsmart it rather than carpet-bomb it.

    Mark Sommerfeld

    By 1989, Bob Gatenby was preoccupied with modeling the evolution of cancers. During the day he would scrutinize the x-rays of cancer patients, and at night, after he and his wife had put their young kids to bed, he would sit at the kitchen table in their suburban Philadelphia home and pore over medical journals. The patterns he started seeing in the literature led him to a question: What if cancer cells outcompete normal, healthy cells in the body in the same way an animal species edges out its competitors in nature?

    Gatenby recalled that ecologists had come up with equations to describe the balance between predators and prey. As an undergraduate at Princeton University, he had learned the classic example of the math that plotted how growing populations of snowshoe hares fuel the rise of the lynx that feed on them. He began dusting off old books and buying new ones to educate himself on species interactions.

    For a year Gatenby read and mulled. Then, in 1990, on a family trip to the Atlantic coast of Georgia, he found himself stuck in a hotel room one afternoon with his two napping children. Out of nowhere, an idea presented itself. He grabbed a pad of hotel stationery and a pen and began scribbling down some key formulas from population ecology. Those formulas, called Lotka-Volterra equations, have been used since the 1920s to model predator-prey interactions and, later, competition dynamics between species, and were among the ones he had recently brushed up on at home. Gatenby thought this set of formulas could also describe how tumor cells compete with healthy cells for energy resources such as the glucose that fuels them.

    When he returned to Philadelphia, he spent what time he could at a typewriter composing a paper that laid out this theoretical model. As soon as he finished, he showed it to some colleagues. He didn’t get the response he had hoped for: They thought it was ridiculous to try to use ecological equations to model cancer. “To say that they hated it would not do justice to how negative they were about it,” he says. His peers thought that a brief set of formulas couldn’t capture cancer’s seemingly infinite complexities.

    Louis Weiner, who worked alongside Gatenby at the time, recalls that their colleagues viewed Gatenby’s ideas as offbeat. “Treatment orthodoxy at that time favored high-intensity, dose-dense treatments aiming to eradicate every last tumor cell in a cancer patient,” says Weiner, who is now director of the Georgetown Lombardi Comprehensive Cancer Center in Washington, DC. “Bob’s perspective was antithetical to those beliefs.”

    But Gatenby pressed on and succeeded in getting the paper, chock-full of Lotka-Volterra equations, accepted in the prominent journal Cancer Research in 1991.

    Despite the publication of his theory, he still couldn’t convince oncologists that his idea had practical merit. “I think that they felt intimidated,” Gatenby says. “Most physicians are mathematically illiterate.” He found that the medical establishment was reluctant to publish much of his follow-up work.

    In the years afterward, Gatenby moved up the ladder to lead the department of diagnostic imaging at Fox Chase Cancer Center. He was later appointed head of the department of radiology at the University of Arizona College of Medicine in Tucson, and he continued to garner recognition for his skilled interpretation of scans and to receive federal grants to study cancer.

    Then, in 2007, the Moffitt Cancer Center offered Gatenby a job as chair of the radiology department. He had a condition: He would come if the hospital created a division where he could pursue in earnest the link between Darwin’s principles and cancer. The Integrated Mathematical Oncology Department, born from this negotiation, is the first math department in a cancer hospital, he says. Finally, Gatenby had a place where he could put his ideas to the test.

    Gatenby arrives at his corner office at Moffitt most days by 7 am. He’s 67 now, and his hair is gray at the temples, but his eyebrows are still brown. His children—the ones who were napping in that hotel room when he jotted down his Darwinian inspiration—now have children of their own, and he has the  “I ♥ Grandpa” coffee mug to prove it. A hospital lanyard around his neck, he rolls up his crisp shirtsleeves and settles down at his desk. Outside his office, roughly 30 scientists and PhD students spend their days researching patterns of cancer growth using equations like those describing population dynamics.

    To Gatenby's knowledge, no one had endeavored to exploit evolution against cancer in a clinical trial until he developed his prostate cancer experiment. He picked prostate cancer to test this approach partly because, unlike other cancers, a routine blood draw for a molecule called prostate-specific antigen (PSA) can offer an immediate proxy for the cancer’s progression.

    To design a clinical trial, Gatenby and his Moffitt collaborators first needed to account for their idea that tumor cells vie against each other for resources. They turned to game theory to plot this dynamic and plugged the numbers into the Lotka-­Volterra equations. The computer simulations they ran with these equations estimated how quickly drug-resistant cells would outcompete other tumor cells when exposed to the continuous dosage of Zytiga typically given to advanced-stage prostate cancer patients.

    In the simulations, the typical administration of the drug led to drug-resistant cancer cells rapidly running rampant. The treatment would ultimately fail each time. That bleak outcome matched up with the results seen in hospital records. In contrast, the computer simulations suggested that if Zytiga were administered only when the tumor seemed to be growing, then the drug-resistant cells would take much longer to gain enough advantage to overrun the cancer.

    In 2014 the Moffitt team managed to get the first small study to test this adaptive therapy approach off the ground, recruiting Robert Butler and a small group of other men with advanced prostate cancer. Butler’s oncologist explained to him how it would work. He would remain on the Lupron he’d taken for years, and each month he would go to the hospital to get his PSA level tested, to judge whether his prostate tumor was growing. Every three months, he would get a CT scan and a full-body bone scan to watch for disease spread. Whenever his PSA level edged above where it stood when he entered the trial, he would start taking the more powerful Zytiga. But when his PSA level fell to under half of the baseline, he could go without Zytiga. This is appealing because Zytiga and drugs like it can cause side effects like hot flashes, muscle pain, and hypertension.

    The Moffitt approach also promised to be far cheaper than taking Zytiga continuously. When purchased wholesale, a one-month supply costs almost $11,000. Butler had health insurance, but even so, his first month’s supply each year would set him back $2,700 in out-of-pocket copayments, and $400 a month thereafter. Going off the drug whenever his PSA level was low would translate to huge cost savings.

    Butler was participating in a so-called pilot trial, which was less rigorous than a large clinical trial, because it didn’t randomly assign patients to receive the experimental or standard treatments. Rather, the study relied on a group of patients treated outside the trial as well as results from a 2013 paper on Zytiga to come up with a benchmark for how patients typically fare when receiving continuous dosing of the drug.

    When the early results of their new trial trickled in, the Moffitt scientists were gratified and relieved. Ahead of the trial, “we were, to be honest, terrified,” Gatenby says. The benefit of adaptive therapy appeared to be huge. Of the 11 men in the study, one left the trial after his disease spread, but most were living longer than expected without their cancer progressing. Men getting continuous dosing of Zytiga go a median of 16.5 months before the cancer becomes resistant to the drug and spreads. In comparison, the median time to progression for the men receiving adaptive therapy was at least 27 months. Moreover, they were on average using less than half of the standard amount of Zytiga. Joel Brown, an evolutionary ecologist and one of Gatenby's collaborators, said the team felt a moral obligation to get the word out: “The effect was so big that it would be unethical not to report it immediately,” he says.

    They published a report in 2017, far earlier than anticipated, to a generally positive reaction from prostate experts—particularly because it suggested a way that people with cancer might live longer with less medication. “If you can reduce side effects, I think that’s fantastic,” says Peter Nelson, an oncologist who studies prostate cancer at the Fred Hutchinson Cancer Research Center in Seattle. “Conceptually it’s a beautifully simple approach.” Jason Somarelli, a biologist at the Duke Cancer Institute, calls Gatenby a pioneer: “He’s turning cancer into a chronic disease.”

    Butler, who is 75, has gone for long periods off Zytiga—with stretches lasting as long as five months. “I’m now the poster boy, they say,” Butler says. He’s one of the best responders in the study.

    Some doctors are already trying adaptive therapy on patients outside of clinical trials. In 2017 a doctor in Oregon, inspired by Gatenby’s pilot study, started a prostate cancer patient on a modified version of the approach when he refused the standard continuous dosing. She has since started treating a second man using adaptive therapy. Other oncologists might be doing the same. It’s nearly impossible to know for sure, because adaptive therapy doesn’t require government approval. The protocol uses already-approved medications, and the US Food and Drug Administration doesn’t police specific dosing schedules.

    Experts urge caution, however. The prostate cancer study was very small, and without a randomly assigned control group the results aren’t truly reliable. While the majority of the men in the trial remain stable, four more saw their cancer progress since the paper came out. “This is an approach that now needs to be carefully studied in prospective clinical trials before it is adopted into clinical practice,” says Richard L. Schilsky, chief medical officer for the American Society of Clinical Oncology. Years could pass before a large-scale test of adaptive therapy takes place. Len Lichtenfeld, interim chief medical officer of the American Cancer Society, echoes Schilsky’s concerns. “Is it intriguing? Yes,” Lichtenfeld says. “But there is still a long way to go.”

    Gatenby agrees that adaptive therapy needs rigorous testing. He conveys a kind of humility you don’t see very often in the upper reaches of medical science. He told me multiple times that he is not an interesting subject to write about, and more than once I heard close colleagues mangle the pronunciation of his name (which is pronounced GATE-en-bee); apparently he had never corrected them. But when he believes in something, he doesn’t relent. And he believes in adaptive therapy. “He’s like a teddy bear, but underneath that soft exterior he’s made of steel,” says Athena Aktipis, who studies theoretical and cancer biology at Arizona State University and has collaborated with Gatenby.

    Late last year, Gatenby presented his work at a meeting of prostate cancer specialists. In the question and ­answer session afterward, an attendee shared his surprise at the results. “I guess what you’re saying is that we’ve been doing it wrong all these years,” the man mused, according to Gatenby. “I was literally speechless for a few moments,” Gatenby admits, “and then I said, ‘Well, yeah, I guess that’s what I’m saying.’” He is still dwelling on the exchange and wishes he could somehow find the man and apologize. He’s not taking back what he said; he does think the profession can do better. But, he says, “I should have been more diplomatic.”

    In 2016, a couple dozen researchers gathered in a conference room at an ultramodern genetic sequencing center along the banks of the River Cam, 9 miles outside of Cambridge, England. The gathering brought together experts to discuss how principles of ecology might apply to cancer. When they took a break, their idea of fun was to play a round of “Game of Clones,” in which a small group of scientists pretended to be cancer cells trying to persuade the maximal number of other researchers bouncing around the room to be their malignant clones.

    During this meeting, one overarching theme kept popping up: Evolution doesn’t operate the same way within all cancers. It’s not even clear that Darwinian natural selection always determines the genetic mutations that abound within a tumor. A study of colon cancer samples conducted by one of the conference attendees, Andrea Sottoriva of the Institute of Cancer Research in London, and Christina Curtis, a computational biologist at Stanford University, suggested a different pattern.

    When colorectal tumors begin to form, there seems to be a “big bang” of mutations. This initial explosion of cellular diversity in these colon cancers seems to be followed by a period in which random genetic changes arise and become more prevalent out of pure happenstance rather than because the mutations confer some sort of competitive advantage. It’s still unclear whether adaptive therapy, which operates on the assumption that there’s Darwinian competition between tumor cells, would work well for cancers where the mutations arise continuously by chance.

    Still, a kind of consensus emerged, and a year after the Cambridge meeting, the organizers published a statement outlining how cancers might be better classified. Twenty-two researchers—some of the biggest names in the field of evolutionary oncology, including Gatenby—coauthored the document.

    One important factor in the group’s suggested classification scheme is a measure of how swiftly a cancer is mutating. In the past decade, faster DNA sequencing tools have shown that Nowell—Gatenby’s old professor, the ­cigarette-smoking pioneer in applying evolutionary thinking to cancer—was prescient: Individual tumors often bristle with rapid-fire genetic changes. Rather than two or three initial errors setting off a chain of uncontrolled growth, many tumors are the result of several series of mutations. A significant experiment published in 2012 found at least 128 different DNA mutations in various kidney tumor samples from one patient, for instance. There's some evidence that the more mutations there are, the more aggressive a cancer tends to be, suggesting a higher chance that one of these DNA changes will confer tumor cells with the potential to be drug-resistant. Given technological advances, it’s not too far-fetched to think that within the coming decade, doctors will routinely measure the amount of mutations in their patients’ tumors.

    Today most cancers are assessed using a system that dates back to the 1940s. Doctors typically evaluate factors such as whether a cancer has spread to lymph nodes or beyond and on the basis of these attributes determine its “stage.” On one end of the spectrum are stage 1 cancers, which are relatively confined, while at the other end are stage 4 cancers, which have spread extensively. Crucially, this system of assigning cancer a stage doesn’t formally take a cancer’s genetic mutations into account.

    The suggested categorization system that grew out of the Cambridge meeting would look at cancer in a completely new way. Rather than four stages of cancer, the authors of the 2017 consensus statement propose no less than 16 different categories—for example, tumors that have slow cell turnover and a low rate of accumulating mutations, or tumors that are a hotbed of genetic diversity with quickly replicating cells competing for resources. This latter type of tumor might be the most likely to evolve a way to outcompete drug-sensitive cells in the body and thereby could, in some cases, be the most dangerous. A fast-­moving cancer of this kind might also be the best candidate for adaptive therapy.

    Around the time the consensus statement came out, Gatenby and his collaborators in Tampa were hard at work running cell experiments in a lab down the hall from his office. The goal was to prove a key tenet of adaptive therapy. Gatenby’s approach assumes that when treatment is removed, drug-resistant cancer cells will replicate more slowly than drug-sensitive cells. The theory rests on the assumption that those resistant cells need lots of energy to maintain their armor against the medication meant to kill them. During treatment breaks, the thinking goes, the fuel-hungry resistant cells are outcompeted by drug-­sensitive cells, which need fewer resources to thrive.

    To gather evidence for this idea, Gatenby’s research team placed human breast cancer cells with resistance to the drug doxorubicin in a petri dish alongside an equal-size population of doxorubicin-sensitive breast cancer cells and watched the two groups fight for resources. By day 10 the resistant cells made up only 20 percent of the cells in the dish and continued to slowly decline from there. At the end of the experiment, published last year, these resistant cells had dropped to around 10 percent of the total population.

    Granted, this experiment happened in a petri dish, not a human body—or even the body of a lab rat. Some leading cancer specialists agree with Gatenby that drug-­resistant cells are likely outcompeted by other cells when cancer medication is withdrawn. But, say others, what if Gatenby is wrong? What if resistant cells actually thrive during the period when the patient is taken off drugs? The risks are high. No one wants to hasten death.

    Rethinking cancer as a chronic illness requires a mental shift—a shift that other changes in cancer therapy might be easing. There’s a practice of letting cancer patients take doctor-supervised “drug holidays” from their medications, for instance. And we’ve adapted our thinking when it comes to medicine before. Doctors once thought that stress was the primary culprit behind ulcers, but biologists uncovered a bacterium as the main cause. More recently we’ve gotten used to the weird idea that trillions of bacteria live in our gut microbiome.

    Perhaps, then, it isn’t a huge stretch to think we might tolerate coexisting with cancer cells as long as we can prevent them from growing unchecked. Whereas Darwin put forth ideas about what has become known as macro­evolution—the rise and fall of species, whether they be beetles or bald eagles—this new view of cancer could be an example of what we might call “endo-­evolution”: natural selection playing out within an organism’s own tissues.

    The American Cancer Society acknowledges that some cancers are already managed as chronic illnesses. In certain cases, doctors simply try to keep the malignancies from spreading with new rounds of medication. Gatenby’s adaptive therapy aims to take the guesswork out of the treatment. More trials at Moffitt are in the planning stages or underway for cancers affecting the breast, skin and thyroid, in addition to a new, bigger trial in prostate cancer patients. Across the country, in Arizona, Athena Aktipis and her husband and scientific collaborator, Carlo Maley, have secured a grant to begin a breast cancer trial using adaptive therapy in conjunction with a local branch of the Mayo Clinic.

    But the idea of cancer as an implacable enemy that needs to be annihilated runs deep. Even Gatenby feels it, particularly when it comes to children. When his daughter was a teenager, one of her classmates died from a form of cancer called rhabdomyosarcoma. He never met his daughter’s friend but heard about his decline. Then, last year, a pediatric oncologist at Moffitt approached him to see if therapy inspired by evolutionary theory might work to fully weed out cancer from children newly diagnosed with that same disease. In the highest-risk group, that cancer kills as many as 80 percent of patients within five years.

    In October, they met to begin designing a study. This trial will use a more sophisticated evolutionary model to cycle patients on and off of several drugs. The hope is to deploy the additional drugs to kick the cancer while it’s down, and thereby drive it to extinction. It’s an ambitious goal.

    For now, Gatenby is most focused on managing advanced cancers in adults, and doing so as a chronic disease. In that sense, he’s challenging the words emblazoned on the outside wall of the Moffitt Cancer Center: “To contribute to the prevention and cure of cancer.” Robert Butler has pondered these words too, which he passes when walking into the building for checkups and treatments. “Certainly, in my case there’s no intention of cure. What we’re doing is control. So that’s not really the correct logo anymore, is it?” he says. Butler tells me about a time when he and some of the Moffitt researchers brainstormed alternative slogans. “We finally came up with ‘Our aim is to make you die of something else’—which I thought was lovely,” he adds. “It’s more true.”

    Robert Gatenby photographed at Everson Museum of Art

    Roxanne Khamsi (@rkhamsi) is a science writer living in New York and chief news editor of Nature Medicine.

    This article appears in the April issue. Subscribe now.

    Listen to this story, and other WIRED features, on the Audm app.

    Let us know what you think about this article. Submit a letter to the editor at

    Read more:

    Read More

    Solar Panels Power New Schoolsand New Ways of Learning

    Dressed in pastel pink and green for an early spring day, second-grader Katherine Cribbs was learning about energy on a virtual field trip—to her own school.

    With a flurry of touch-screen taps, she explored the “energy dashboard” of Discovery Elementary in Arlington, Virginia. On her tablet, she swiped through 360-degree views of her school, inside and out. She clicked on icons embedded in the virtual classroom to learn about energy-saving features such as LED lights and super-insulated exterior walls made of concrete-filled foam blocks. Exploring the virtual school kitchen, she could read about how the lack of a deep fryer means less energy is needed for venting grease from the air. Another swipe whisked her up to the school’s roof, where about 1,700 solar panels spread out before her.

    Angelique Coulouris, a second-grade teacher at Discovery Elementary, guides students on a virtual tour of the school's roof-top solar lab.
    Chris Berdik for The Hechinger Report

    After a few minutes, she looked up from her computer to explain her progress in a confident voice that rose above the second-grade din. “I learned that our solar panels rotate,” she said. “So, wherever the sun moves, the panels go, too.”

    In addition to this virtual tour, Discovery’s dashboard displays, in real time, the school’s energy generation. And in colorful bar graphs and pie charts, it also tracks energy use—broken down by lighting, plug load, kitchen, and HVAC. The tally reveals that Discovery generates more energy through its solar array than it uses over the course of the year.

    Buildings that make at least as much energy as they use are called “net-zero” (and “net positive” if they make more than they need). And nationwide, K-12 schools are leading a fledgling “net-zero” building boom that has grown from a few proof-of-concept structures a decade ago to hundreds of buildings completed or under-construction.

    Dozens of these ultra-green schools are going up in every sort of district—urban and rural, affluent and lower income, blue state and red state. Much of the advocacy for net-zero buildings has focused on environmental and economic incentives. K-12 schools run up a $6 billion annual energy tab every year, the Department of Energy reports—more than they spend on textbooks and computers combined, and second only to the cost of teacher salaries. But the K-12 schools leading the net-zero charge are uncovering major educational benefits as well.

    While Discovery’s second-graders scoured their school for light and heat energy, a group of third graders huddled around a table to brainstorm fraction “story problems” using the school’s energy data.

    They suggested using fractions to find out how much of yesterday’s solar energy was used up by the school, to compare one hour’s solar energy to the whole day, and to show how much of the school’s energy use was from lighting. Their numerators and denominators could come from the dashboard.

    “Everywhere you walk through this building, you can learn from it,” said Discovery’s principal, Erin Russo. There’s a large-screen energy dashboard by the school’s main entrance, and the building’s mechanical systems, including the geothermal pumps and the solar inverters that change direct current to alternating current, are prominently displayed behind large glass windows in the hallway.

    Learning about the behavior of light, Discovery’s fifth graders have visited the schools’ rooftop solar lab (a handful of adjustable panels that are metered separately) to see how angling the panels changes their power production.

    “Energy is normally so invisible,” said a fifth-grade science teacher, Andrew Bridges. “But the kids can see these solar panels right outside their window. They can see the energy production dipping on cloudy days.”

    Bridges’ students also looked for patterns of electricity use and tried to deduce why it was so much heavier on Saturdays than Sundays or why it spiked at 5 AM. “I didn’t give them energy-dashboard tests, because that’s not what we’re after,” said Bridges. “My goal as a teacher is to grow good critical thinkers, and I think the energy dashboard opens their eyes to something most people don’t think too much about.”

    Still, Discovery’s teachers do need to cover the Virginia state learning standards, and matching these standards with dashboard lessons can be tricky. At one point, third graders were set to learn graphing with the school’s daily energy tally, but the plan was scrapped because the dashboard gives that data in bar graphs. Virginia’s third-grade standards call for using line graphs to track change over time.

    Discovery’s math coach, Angela Torpy, and technology coach, Keith Reeves, help teachers weave the building’s data into standards-based lessons. Students learn the statistical measures of mean, median, and mode using the school’s energy consumption numbers, or demonstrate transparency, translucency, and opacity by covering solar panels with different materials and predicting the energy production.

    Besides aligning with state standards, Discovery teachers must also contend with the dashboard’s occasional technical glitches—it tends to conk out due to server strain if too many kids are working on it. So teachers usually have students team up or rotate so one group hops on the dashboard while the rest of the class works on other tasks. Or they simply distribute screen grabs of dashboard data.

    Still, according to Torpy, the upside of students learning from their own building outweighs these challenges. “You can see their level of excitement when they bring up the energy dashboard, and they’re making their own word problems with real data about their own school,” Torpy said of the students. “It’s empowering to them.”

    The authenticity of these lessons is reinforced by a schoolwide focus on sustainability. In lieu of a school council, Discovery has an Eco-Action club whose members do annual audits of the school’s energy use, trash, food waste, water consumption, and other metrics. They did the school energy audit early in the school year, explained a fifth-grade Eco-Action member named Charlie Dantzker. “Basically, we walked into every classroom, counted the lights, checked to see what was plugged in, and looked for vampires,” Dantzker said. A vampire, he explained, is a device that draws power even when it’s turned off but still plugged into the wall.

    But the students didn’t find a lot of waste in the audit: Discovery is already ultra-energy efficient. The school’s “energy use index,” a measure of power use per square foot, is about a third of the average for district elementary schools. The district plans to build on that success.

    Arlington is a fast-growing district, and Discovery Elementary opened in 2015 as part of an ongoing school-building program (it shares a campus with a middle school with a trailer park to accommodate its overflowing student population). Below the schools’ shared athletic fields are geothermal wells that use a groundwater loop to provide cooling in summer and heat in winter.

    Discovery Elementary School in Arlington, Virginia, is among a growing group of "net zero" K-12 schools, which produce as much solar energy as they use (or more) over the course of the year.
    Chris Berdik for The Hechinger Report

    The district had not set out to build a net-zero school, but the Charlottesville architecture firm VMDO told them it could be done below their budget. Cathy Lin, the energy manager for Arlington Public Schools, regularly leads tours of Discovery, including a rooftop viewing of its 500-kilowatt solar array made up of about 1,700 panels. Another net-zero elementary school, also designed by VMDO, is to open in 2019. And as the district keeps growing, Lin is pushing for more.

    “I tell the board [of education] if I had all Discoveries, I would spend less than $1 million [a year] on utilities. Now, we spend close to $7 million a year,” she said.

    This calculus increasingly makes sense to growing public school districts, according to Ralph DiNola, CEO of the New Buildings Institute, a nonprofit that promotes and verifies net-zero buildings. Because schools are designed to be used by the same owner over many decades, there is plenty of time for energy savings to surpass the extra upfront expenditures, which in any case have plummeted in the past decade. The cost of solar power is way down, and, according to DiNola, the necessary energy efficiency, “doesn’t require bleeding-edge technology. You can use standard building materials that are commonplace in the market today.”

    Comparing the initial cost of building a net-zero school to that of a standard school is tough, because construction costs vary widely as do the energy-efficiency challenges between climates One constant, however, is that the priciest piece of a net-zero building is the solar array. For instance, Discovery’s construction cost for the building and the solar array came to about $316 per square foot, but the building alone cost $262 per square foot, according to VMDO architect Wyck Knox, who led the project design team (numbers don’t include the cost of the school’s two turf soccer fields). Often, districts will opt to build ultra-energy-efficient “net-zero ready” schools that could become net-zero if and when the municipality raises additional money to add the solar power.

    According to a March 2018 NBI report, there are 89 verified or “emerging” net-zero schools (emerging means under construction or too new to have been verified yet). And school buildings are the leading type of non-residential net-zero building, representing 37 percent of all projects tracked by NBI. Supporting these efforts, the Department of Energy published a how-to report on building net-zero K-12 schools in 2016 and created a “Zero-Energy Schools Accelerator” program to give districts technical guidance.

    While the net-zero school trend is still relatively small, it has thrived in districts of every geographic and socioeconomic description. The school district of Horry County, South Carolina, which counts the majority of its 43,800 students as impoverished, opened three net-zero schools in 2017, one in 2018, and has one more under construction. In San Francisco Unified, where half the students receive free and reduced-price lunch and a quarter are English language learners, the district is building three net-zero schools, including one retrofit of an existing elementary school. At Sandy Grove Middle School, a net-positive building in Hoke County, North Carolina, where nearly 60 percent of students are low-income, the grade levels face off in friendly energy-saving competitions. And at New York City’s first net-zero school, the Kathleen Grimm School for Leadership and Sustainability (P.S. 62) on Staten Island, rows of yellow stationary bikes, both indoors and on the playground, generate pedal power displayed on a big screen.

    Although energy dashboards are a popular way to turn these buildings into teaching tools, they’re not necessary. Oregon’s Hood River Middle School created a food and conservation science program several years ago after it added a net-zero science and music building that includes a 1,000-square-foot greenhouse. Hood River students engineer and build net-zero heating and cooling systems for the greenhouse, such as solar heat collectors made of foam boxes lined with soda cans spray-painted black, and a solar-powered “climate battery” that pulls super-heated summer air into layers of dense rocks that gradually radiate the heat back into the greenhouse as the weather cools.

    In addition to maintaining an aquaculture system and growing fruit trees, grapes, tea and other crops, the Hood River students have a perennial challenge from their teacher Michael Becker: to grow tomatoes year-round. They haven’t quite succeeded, but they’re getting close. Last year, they had tomatoes ripening on the vine well into December.

    “My lesson plan is: Here’s a problem. Solve it,” said Becker. “We are hyper-aware of our net-zero energy budget, so the kids have to become super-sharp engineers and find non-traditional solutions.”

    Back at Discovery, educational strategies are expanding, too. Last year’s school management plan included the expectation that teachers give at least one sustainability-focused lesson every quarter—but several teachers described that as a low bar.

    “We’re shooting for sustainability to be taught every day,” said Bridges, the fifth-grade teacher. To bolster those efforts, Reeves is making changes to the energy dashboard, trying to add in student-collected data on the school’s trash production, water use, and transportation. The teachers would also like to make it easier for students to get the raw data that feeds the existing dashboard, so they could make their own, customized dashboards, possibly in conjunction with Virginia’s new K-12 computer science standards.

    In the spring of 2018, Discovery staff began a more comprehensive effort to craft standards-based sustainability lessons, by working with Jennifer Seydel, executive director of the Green Schools National Network. Discovery will join GSNN’s recently-formed “Catalyst Network”—about 100 schools that are meant to showcase the best-practices in sustainability education and to jump-start studies into how it stacks up against traditional schooling for student learning.

    “Right now, we have a lot of anecdotes,” said Seydel, “but the gold-standard research is not there.”

    Starting in 2019, the plan is for all students to do sustainability audits, not just the Eco-Action club. Each grade level will use their audits to identify problems and issues they can confront with collaborative mastery projects using the problem-solving steps of “design thinking.”

    Discovery art teacher Maria Burke has already led her students through several design-thinking projects, such as creating outdoor sculptures with the right mix of shapes and colors to attract pollinators back to a school garden that fell victim to overzealous pruning.

    “We want to give students the skills to be innovators, to find solutions,” said Burke. “We want to them to be thinkers for the future and to collaborate and innovate with the world in mind.”

    This story about environmental education was produced by The Hechinger Report, a nonprofit, independent news organization focused on inequality and innovation in education. Sign up for our newsletter.

    Read more:

    Read More

    To Understand the Universe, Physicists Are Building Their Own

    Silke Weinfurtner is trying to build the universe from scratch. In a physics lab at the University of Nottingham—close to the Sherwood forest of legendary English outlaw Robin Hood—she and her colleagues will work with a huge superconducting coil magnet, 1 meter across. Inside, there’s a small pool of liquid, whose gentle ripples stand to mimic the matter fluctuations that gave rise to the structures we observe in the cosmos.

    Weinfurtner isn’t an evil genius hell-bent on creating a world of her own to rule. She just wants to understand the origins of the one we already have.

    The Big Bang is by far the most popular model of our universe’s beginnings, but even its fans disagree about how it happened. The theory depends on the existence of a hypothetical quantum field that stretched the universe ultra-rapidly and uniformly in all directions, expanding it by a huge factor in a fraction of a second: a process dubbed inflation. But that inflation or the field responsible for it—the inflaton—is impossible to prove directly. Which is why Weinfurtner wants to mimic it in a lab.

    If the Big Bang theory is right, the baby universe would have been created with tiny ripples—so-called ‘quantum fluctuations’—which got stretched during inflation and turned into matter and radiation, or light. These fluctuations are thought to have eventually magnified to cosmic size, seeding galaxies, stars, and planets. And it’s these tiny ripples that Weinfurtner wants to model with that massive superconducting magnet. Inside, she’ll put a circular tank, some 6 centimeters in diameter, filled with layered water and butanol (the liquids have different densities, so they don’t mix).

    Then, her group of researchers will kick in the artificial gravity distortions. “The strength of the magnetic field varies with its position,” says Richard Hill, one of the paper’s co-authors. “By moving the pool to different regions of the field, the effective gravitational force can be increased or decreased,” he says, “and can even be turned upside-down.”

    By varying gravity, the team hopes to create ripples—but unlike those on a pond, the distortions will appear between the two liquids. “By carefully adjusting the speed of the ripples we can model an inflating universe,” says another team member, Anastasios Avgoustidis. In cosmic inflation, space rapidly expands while the ripples of matter propagate at a constant speed—and in the experiment, the speed of the ripples rapidly decreases as the liquid’s volume remains constant. “The equations describing the propagation of ripples in these two scenarios are identical,” Avgoustidis says.

    That’s important: If the resulting fluctuations look as if they might trigger structures like those found in today’s universe, then we may have had a glimpse of how inflation worked.

    This isn’t the first time Weinfurtner—or anyone else—has tried to mimic cosmic phenomena on a tiny scale. Around the world, astrophysicists can be found in labs, developing ever more sophisticated set-ups using sound waves that travel just like light waves in strong gravitational fields, or magnets to trigger perturbations in fluids and gases.

    Last June, Weinfurtner used a large water tank with a sink in the middle to mimic another difficult-to-observe phenomenon: the superradiance of a black hole. And it was William Unruh, a physicist at the University of British Columbia in Vancouver (and Weinfurtner’s advisor a decade ago), who pioneered the idea of simulating gravity in a lab in 1981. After all, “we cannot rerun the universe—and cannot live long enough to see the results of the experiment if we could,” says Unruh.

    Analog gravity experiments have gotten more sophisticated since Unruh’s first experiment, which used a fluid simulation of gravity to show that the event horizon of a real black hole does to light what a sonic black hole does to sound. In other words: What we can measure and express in the lab can be used to explore properties of astrophysical black holes. It even works for the famous Hawking radiation, the prediction that black holes radiate heat and at some point will totally evaporate. A few years ago, Jeff Steinhauer of the Technion in Haifa, Israel, discovered the radiation’s sonic analog.

    Simulations are being used to study other aspects of inflation, too. A few years ago, a team led by Christoph Westbrook of CNRS (The French National Center for Scientific Research) in Paris studied the production of quantum particles by ‘wiggling’ a ring Bose Einstein condensate—a state of matter in which the atoms have been cooled to near absolute zero, making them behave as a single quantum object. During inflation, the temperature of the universe dropped drastically, before starting to rise again when the inflation ceased with the process called ‘reheating’—leading to the ordinary Big Bang expansion.

    Another experiment last October, led by physicist Stephen Eckel at the Joint Quantum Institute at the National Institute of Standards and Technology and University of Maryland, also used a Bose Einstein condensate to observe the stretching of sound waves—analogous to the stretching, or redshifting, of light that happens as the universe expands. The team also observed an effect similar to the reheating process.

    Weinfurtner says that her ‘novel’ setup can work without a Bose Einstein condensate. That means that the system will be too hot to observe quantum fluctuations directly, says Unruh. But the authors argue that it will be possible to observe the fluctuations via the thermal noise in their system—an analog of quantum noise.

    Their approach, say the authors, will allow them to mimic a long expansion phase, achieving—using the technical language—‘many e-folds,’ a parameter that measures the duration of inflation. Researchers believe that inflation increased the size of the universe by more than a factor of 10^26—or more than 60 e-folds—in just a fraction of a second. The new experiment, if successful, would simulate inflation for much longer period than previous lab set-ups, or have “many more e-folds than any other, enough to put the results beyond doubt,” says Ian Moss of the University of Newcastle. “You need some time to elapse for the system to forget its initial conditions and settle down to the state governed by inflationary fluctuations,” he says.

    “It is possible that they will uncover new physics that help to inform future cosmological models,” says Eckel. “Or, on the reverse, help to test some aspect of future cosmological models.”

    Not everyone is convinced that simulating our universe’s first moments in the lab will help cosmology, though. Ted Jacobson of the University of Maryland thinks that such experiments are “not so much verifying something we are uncertain about, but rather implementing and observing it in a lab.” Why mimic the universe in the lab? “It’s fun. And it may suggest new phenomena we didn’t think of in cosmology,” he says.

    Avi Loeb, an astrophysicist at Harvard University, is not as optimistic. He says that Weinfurtner’s proposed analogy of creating ripples between two fluids in a tank will not extend to the “fundamental physical nature” of quantum fluctuations—because the experiment simply reproduces the equations physicists already use to describe inflation. If these equations are missing a fundamental ingredient, the experiment will not reveal it. “While analog laboratory experiments could incorporate quantum mechanical effects, they do not involve the interplay of quantum mechanics with gravity in the way that black holes and inflation do," he says.

    Weinfurtner’s experiment is tailored to reproduce our existing notion of inflation, Loeb adds – but it’s not meant to test it at a fundamental level. “The only way to get a discrepancy between the experiment and our notion of inflation is if we did the math wrong for one of these systems. Otherwise, we will learn nothing new,” he says.

    The real test of inflation would be, Loeb says, the production of the substance that propelled it—the inflaton—in the lab. But this would require reaching energies up to a trillion times larger than those achieved in our most powerful particle accelerator, the Large Hadron Collider—and such a test seems unlikely in the near future.

    “Just mimicking the equations of an analogous system is a metaphor to the real system, not an actual test of its fundamental properties,” says Loeb. It’s like “smelling food instead of eating the actual food,” he adds, only “the latter has the real value.”

    That’s true, but sometimes the smells from a kitchen can tell you a lot about what was served for dinner.

    Galactic Investigators

    Read more:

    Read More

    Americas Secret Ice Base Wont Stay Frozen Forever

    This story originally appeared on Atlas Obscura and is part of the Climate Desk collaboration.

    The creation of Camp Century, from the outset, was an audacious scheme. Under the thick ice of Greenland, a scant 800 miles from the North Pole, the US military built a hidden base of ice tunnels, imagined as an extensive network of railway tracks, stretching over 2,500 miles, that would keep 600 nuclear missiles buried under the ice. Construction began in 1959, under cover of a scientific research project, and soon a small installation, powered by a nuclear reactor, nested in the ice sheet.

    In the midst of the Cold War, Greenland seemed like a strategic point for the US to stage weapons, ready to attack the USSR. The thick ice sheet, military planners imagined, would provide permanent protection for the base. But after the first tunnels were built, the military discovered that the ice sheet was not as stable as it needed to be: It moved and shifted, destabilizing the tunnels. Within a decade, Camp Century was abandoned.

    When siting the secret ice base, the military chose a spot where dry snow kept the surface of Greenland’s ice sheet from melting, and when the base was abandoned its creators expected the remains to stay encased in ice forever. But decades later, conditions have changed, and as a team of researchers reported in a 2016 paper, published in Geophysical Research Letters, the now-melting ice sheet threatens to mobilize the dangerous pollutants left behind.

    This hazard-in-waiting is a new kind of environmental threat: In the past, there was little reason to worry about water-borne pollution on an ice sheet 100,000 years old. As Jeff D. Colgan, a professor of political science at Brown University, writes in an article released last week in the journal Global Environmental Politics, Camp Century represents both a second-order environmental threat from climate change and a new path to political conflict.

    “We’re starting to get better about dealing with the anticipated problems associated with climate change,” says Colgan. “There are going to be a whole host of unanticipated problems that we never saw coming.”

    By the time the base was abandoned in 1967, it had its own library and theater, an infirmary, kitchen and mess hall, a chapel, and two power plants (one nuclear, one run on diesel). When the base closed, key parts of the nuclear power plant were removed, but most of the base’s infrastructure was left behind—the buildings, the railways, the sewage, the diesel fuel, and the low-level radioactive waste. In the 2016 paper, which Colgan worked on as well, the researchers suggested that the radiological waste was less worrisome than the more extensive chemical waste, from diesel fuel and polychlorinated biphenyls (PCBs) used to insulate fluids and paints.

    Overall, the researchers estimated that 20,000 liters of chemical waste remain at the Camp Century site, along with 24 million liters of “biological waste associated with untreated sewage.” That’s just at Camp Century; the military closed down bases at three other sites in Greenland, too, and it’s unclear how much waste is left there. Over the next few decades, the researchers found, melt water from the ice sheets could mobilize these pollutants, exposing both the wildlife and humans living in Greenland.

    Creating these ice-bound military bases required a delicate political negotiation to begin with. The US established its bases in Greenland under agreement with Denmark, which governed the island at the time. (Greenland now has self-rule but is still part of the Kingdom of Denmark.) There were some principles outlined about the two governments’ responsibilities for the bases, but, as Colgan writes in the new paper, the status of American nuclear weapons on Greenland fell into a diplomatic gray area.

    The Danish government had taken a stand against nuclear weapons and would never condone a nuclear base on Greenland. But in 1957, an American ambassador, Val Peterson, made an official overture to the Danish prime minister, H.C. Hansen. If—just say—the US had nuclear weapons in Greenland, would the Danish government want to know? Five days later, the prime minister had a response: “I do not think that your remarks give rise to any comments from my side,” he wrote, in a “informal, personal, top secret” paper. The US went ahead with the plan.

    There was similar ambiguity around the responsibility for the physical assets of the base. While they remained the property of the United States, the agreement said they could be “disposed of” in Greenland, after input from the Danish government. But it’s not at all clear who’s responsible for dealing with a long-term environmental hazard posed by the waste abandoned there.

    This problem—who will pay to clean up environmental waste—is a common one; in the US, the Superfund program assigns responsibility for a polluted site, often across multiple parties associated with it over the years. But in this sort of international agreement between two governments, there’s no parallel process for divvying up blame or costs.

    “These agreements are rarely fully specified in what’s written down on paper. There’s no real procedure for addressing disputes,” says Colgan. “If Denmark says, US, you’re responsible, and the US says, no, you’re responsible—we don’t have a good resolution process for that. Climate change is likely to make that kind of problem a lot more common.”

    Already, a Greenland politician, who was serving as foreign minister, has lost his job over this issue. After the 2016 paper came out, he started pushing for the US and Denmark to take responsibility for these military hazards; his boss thought he took too aggressive a stance.

    But the problem isn’t going to go away, and Colgan emphasizes that these second-order environmental consequences of climate change—which he calls “knock-on effects”—are only going to become more common, creating knotty political disputes. Think, for instance, of the chemical and oil refineries that, damaged by Hurricane Harvey, started dumping waste.

    Many of these environmental hazards, though, can be linked to multiple causes; in Greenland, it’s easier to pinpoint the precipitating issue.

    “What’s helpful about Camp Century is that, because it’s so isolated, we can be really clear that what’s causing the problem is climate change,” says Colgan. In the 1960s, there was little reason for the US military to imagine that their secret ice-base would cause environmental problems decades in the future. After all, it was encased in ice and should only have been buried deeper into the frozen surface over time.

    Read more:

    Read More

    Brainless Embryos Suggest Bioelectricity Guides Growth

    The tiny tadpole embryo looked like a bean. One day old, it didn’t even have a heart yet. The researcher in a white coat and gloves who hovered over it made a precise surgical incision where its head would form. Moments later, the brain was gone, but the embryo was still alive.

    The brief procedure took Celia Herrera-Rincon, a neuroscience postdoc at the Allen Discovery Center at Tufts University, back to the country house in Spain where she had grown up, in the mountains near Madrid. When she was 11 years old, while walking her dogs in the woods, she found a snake, Vipera latastei. It was beautiful but dead. “I realized I wanted to see what was inside the head,” she recalled. She performed her first “lab test” using kitchen knives and tweezers, and she has been fascinated by the many shapes and evolutionary morphologies of the brain ever since. Her collection now holds about 1,000 brains from all kinds of creatures.

    Quanta Magazine


    Original story reprinted with permission from Quanta Magazine, an editorially independent publication of the Simons Foundation whose mission is to enhance public understanding of science by covering research developments and trends in mathematics and the physical and life sciences.

    This time, however, she was not interested in the brain itself, but in how an African clawed frog would develop without one. She and her supervisor, Michael Levin, a software engineer turned developmental biologist, are investigating whether the brain and nervous system play a crucial role in laying out the patterns that dictate the shapes and identities of emerging organs, limbs and other structures.

    For the past 65 years, the focus of developmental biology has been on DNA as the carrier of biological information. Researchers have typically assumed that genetic expression patterns alone are enough to determine embryonic development.

    To Levin, however, that explanation is unsatisfying. “Where does shape come from? What makes an elephant different from a snake?” he asked. DNA can make proteins inside cells, he said, but “there is nothing in the genome that directly specifies anatomy.” To develop properly, he maintains, tissues need spatial cues that must come from other sources in the embryo. At least some of that guidance, he and his team believe, is electrical.

    In recent years, by working on tadpoles and other simple creatures, Levin’s laboratory has amassed evidence that the embryo is molded by bioelectrical signals, particularly ones that emanate from the young brain long before it is even a functional organ. Those results, if replicated in other organisms, may change our understanding of the roles of electrical phenomena and the nervous system in development, and perhaps more widely in biology.

    “Levin’s findings will shake some rigid orthodoxy in the field,” said Sui Huang, a molecular biologist at the Institute for Systems Biology. If Levin’s work holds up, Huang continued, “I think many developmental biologists will be stunned to see that the construction of the body plan is not due to local regulation of cells … but is centrally orchestrated by the brain.”

    Bioelectrical Influences in Development

    The Spanish neuroscientist and Nobel laureate Santiago Ramón y Cajal once called the brain and neurons, the electrically active cells that process and transmit nerve signals, the “butterflies of the soul.” The brain is a center for information processing, memory, decision making and behavior, and electricity figures into its performance of all of those activities.

    But it’s not just the brain that uses bioelectric signaling—the whole body does. All cell membranes have embedded ion channels, protein pores that act as pathways for charged molecules, or ions. Differences between the number of ions inside and outside a cell result in an electric gradient—the cell’s resting potential. Vary this potential by opening or blocking the ion channels, and you change the signals transmitted to, from and among the cells all around. Neurons do this as well, but even faster: To communicate among themselves, they use molecules called neurotransmitters that are released at synapses in response to voltage spikes, and they send ultra-rapid electrical pulses over long distances along their axons, encoding information in the pulses’ pattern, to control muscle activity.

    Levin has thought about hacking networks of neurons since the mid-1980s, when he was a high school student in the suburbs near Boston, writing software for pocket money. One day, while browsing a small bookstore in Vancouver at Expo 86 with his father, he spotted a volume called The Body Electric, by Robert O. Becker and Gary Selden. He learned that scientists had been investigating bioelectricity for centuries, ever since Luigi Galvani discovered in the 1780s that nerves are animated by what he called “animal electricity.”

    However, as Levin continued to read up on the subject, he realized that, even though the brain uses electricity for information processing, no one seemed to be seriously investigating the role of bioelectricity in carrying information about a body’s development. Wouldn’t it be cool, he thought, if we could comprehend “how the tissues process information and what tissues were ‘thinking about’ before they evolved nervous systems and brains?”

    He started digging deeper and ended up getting a biology doctorate at Harvard University in morphogenesis—the study of the development of shapes in living things. He worked in the tradition of scientists like Emil du Bois-Reymond, a 19th-century German physician who discovered the action potential of nerves. In the 1930s and ’40s, the American biologists Harold Burr and Elmer Lund measured electric properties of various organisms during their embryonic development and studied connections between bioelectricity and the shapes animals take. They were not able to prove a link, but they were moving in the right direction, Levin said.

    Before Genes Reigned Supreme

    The work of Burr and Lund occurred during a time of widespread interest in embryology. Even the English mathematician Alan Turing, famed for cracking the Enigma code, was fascinated by embryology. In 1952 he published a paper suggesting that body patterns like pigmented spots and zebra stripes arise from the chemical reactions of diffusing substances, which he called morphogens.

    "This electrical signal works as an environmental cue for intercellular communication, orchestrating cell behaviors during morphogenesis and regeneration."

    Masayuki Yamashita

    But organic explanations like morphogens and bioelectricity didn’t stay in the limelight for long. In 1953, James Watson and Francis Crick published the double helical structure of DNA, and in the decades since “the focus of developmental biology has been on DNA as the carrier of biological information, with cells thought to follow their own internal genetic programs, prompted by cues from their local environment and neighboring cells,” Huang said.

    The rationale, according to Richard Nuccitelli, chief science officer at Pulse Biosciences and a former professor of molecular biology at the University of California, Davis, was that “since DNA is what is inherited, information stored in the genes must specify all that is needed to develop.” Tissues are told how to develop at the local level by neighboring tissues, it was thought, and each region patterns itself from information in the genomes of its cells.

    The extreme form of this view is “to explain everything by saying ‘it is in the genes,’ or DNA, and this trend has been reinforced by the increasingly powerful and affordable DNA sequencing technologies,” Huang said. “But we need to zoom out: Before molecular biology imposed our myopic tunnel vision, biologists were much more open to organism-level principles.”

    The tide now seems to be turning, according to Herrera-Rincon and others. “It’s too simplistic to consider the genome as the only source of biological information,” she said. Researchers continue to study morphogens as a source of developmental information in the nervous system, for example. Last November, Levin and Chris Fields, an independent scientist who works in the area where biology, physics and computing overlap, published a paper arguing that cells’ cytoplasm, cytoskeleton and both internal and external membranes also encode important patterning data—and serve as systems of inheritance alongside DNA.

    And, crucially, bioelectricity has made a comeback as well. In the 1980s and ’90s, Nuccitelli, along with the late Lionel Jaffe at the Marine Biological Laboratory, Colin McCaig at the University of Aberdeen, and others, used applied electric fields to show that many cells are sensitive to bioelectric signals and that electricity can induce limb regeneration in nonregenerative species.

    According to Masayuki Yamashita of the International University of Health and Welfare in Japan, many researchers forget that every living cell, not just neurons, generates electric potentials across the cell membrane. “This electrical signal works as an environmental cue for intercellular communication, orchestrating cell behaviors during morphogenesis and regeneration,” he said.

    However, no one was really sure why or how this bioelectric signaling worked, said Levin, and most still believe that the flow of information is very local. “Applied electricity in earlier experiments directly interacts with something in cells, triggering their responses,” he said. But what it was interacting with and how the responses were triggered were mysteries.

    That’s what led Levin and his colleagues to start tinkering with the resting potential of cells. By changing the voltage of cells in flatworms, over the last few years they produced worms with two heads, or with tails in unexpected places. In tadpoles, they reprogrammed the identity of large groups of cells at the level of entire organs, making frogs with extra legs and changing gut tissue into eyes—simply by hacking the local bioelectric activity that provides patterning information.

    And because the brain and nervous system are so conspicuously active electrically, the researchers also began to probe their involvement in long-distance patterns of bioelectric information affecting development. In 2015, Levin, his postdoc Vaibhav Pai, and other collaborators showed experimentally that bioelectric signals from the body shape the development and patterning of the brain in its earliest stages. By changing the resting potential in the cells of tadpoles as far from the head as the gut, they appeared to disrupt the body’s “blueprint” for brain development. The resulting tadpoles’ brains were smaller or even nonexistent, and brain tissue grew where it shouldn’t.

    Unlike previous experiments with applied electricity that simply provided directional cues to cells, “in our work, we know what we have modified—resting potential—and we know how it triggers responses: by changing how small signaling molecules enter and leave cells,” Levin said. The right electrical potential lets neurotransmitters go in and out of voltage-powered gates (transporters) in the membrane. Once in, they can trigger specific receptors and initiate further cellular activity, allowing researchers to reprogram identity at the level of entire organs.

    Lucy Reading-Ikkanda/Quanta Magazine

    This work also showed that bioelectricity works over long distances, mediated by the neurotransmitter serotonin, Levin said. (Later experiments implicated the neurotransmitter butyrate as well.) The researchers started by altering the voltage of cells near the brain, but then they went farther and farther out, “because our data from the prior papers showed that tumors could be controlled by electric properties of cells very far away,” he said. “We showed that cells at a distance mattered for brain development too.”

    Then Levin and his colleagues decided to flip the experiment. Might the brain hold, if not an entire blueprint, then at least some patterning information for the rest of the body, Levin asked—and if so, might the nervous system disseminate this information bioelectrically during the earliest stages of a body’s development? He invited Herrera-Rincon to get her scalpel ready.

    Making Up for a Missing Brain

    Herrera-Rincon’s brainless Xenopus laevis tadpoles grew, but within just a few days they all developed highly characteristic defects—and not just near the brain, but as far away as the very end of their tails. Their muscle fibers were also shorter and their nervous systems, especially the peripheral nerves, were growing chaotically. It’s not surprising that nervous system abnormalities that impair movement can affect a developing body. But according to Levin, the changes seen in their experiment showed that the brain helps to shape the body’s development well before the nervous system is even fully developed, and long before any movement starts.

    The body of a tadpole normally develops with a predictable structure (A). Removing a tadpole’s brain early in development, however, leads to abnormalities in tissues far from the head (B).

    That such defects could be seen so early in the development of the tadpoles was intriguing, said Gil Carvalho, a neuroscientist at the University of Southern California. “An intense dialogue between the nervous system and the body is something we see very prominently post-development, of course,” he said. Yet the new data “show that this cross-talk starts from the very beginning. It’s a window into the inception of the brain-body dialogue, which is so central to most vertebrate life as we know it, and it’s quite beautiful.” The results also raise the possibility that these neurotransmitters may be acting at a distance, he added—by diffusing through the extracellular space, or going from cell to cell in relay fashion, after they have been triggered by a cell’s voltage changes.

    Herrera-Rincon and the rest of the team didn’t stop there. They wanted to see whether they could “rescue” the developing body from these defects by using bioelectricity to mimic the effect of a brain. They decided to express a specific ion channel called HCN2, which acts differently in various cells but is sensitive to their resting potential. Levin likens the ion channel’s effect to a sharpening filter in photo-editing software, in that “it can strengthen voltage differences between adjacent tissues that help you maintain correct boundaries. It really strengthens the abilities of the embryos to set up the correct boundaries for where tissues are supposed to go.”

    To make embryos express it, the researchers injected messenger RNA for HCN2 into some frog egg cells just a couple of hours after they were fertilized. A day later they removed the embryos’ brains, and over the next few days, the cells of the embryo acquired novel electrical activity from the HCN2 in their membranes.

    The scientists found that this procedure rescued the brainless tadpoles from most of the usual defects. Because of the HCN2 it was as if the brain was still present, telling the body how to develop normally. It was amazing, Levin said, “to see how much rescue you can get just from very simple expression of this channel.” It was also, he added, the first clear evidence that the brain controls the development of the embryo via bioelectric cues.

    As with Levin’s previous experiments with bioelectricity and regeneration, many biologists and neuroscientists hailed the findings, calling them “refreshing” and “novel.” “One cannot say that this is really a step forward because this work veers off the common path,” Huang said. But a single experiment with tadpoles’ brains is not enough, he added — it’s crucial to repeat the experiment in other organisms, including mammals, for the findings “to be considered an advance in a field and establish generality.” Still, the results open “an entire new domain of investigation and new of way of thinking,” he said.

    Experiments on tadpoles reveal the influence of the immature brain on other developing tissues, which appears to be electrical, according to Levin and his colleagues. Photo A shows the appearance of normal muscle in young tadpoles. In tadpoles that lack brains, the muscles fail to develop the correct form (B). But if the cells of brainless tadpoles are made to express ion channels that can restore the right voltage to the cells, the muscles develop more normally (C).
    Celia Herrera-Rincon and Michael Levin

    Levin’s research demonstrates that the nervous system plays a much more important role in how organisms build themselves than previously thought, said Min Zhao, a biologist at the University of California, Davis, and an expert on the biomedical application and molecular biophysics of electric-field effects in living tissues. Despite earlier experimental and clinical evidence, “this paper is the first one to demonstrate convincingly that this also happens in [the] developing embryo.”

    “The results of Mike’s lab abolish the frontier, by demonstrating that electrical signaling from the central nervous system shapes early development,” said Olivier Soriani of the Institut de Biologie de Valrose CNRS. “The bioelectrical activity can now be considered as a new type of input encoding organ patterning, allowing large range control from the central nervous system.”

    Carvalho observed that the work has obvious implications for the treatment and prevention of developmental malformations and birth defects—especially since the findings suggest that interfering with the function of a single neurotransmitter may sometimes be enough to prevent developmental issues. “This indicates that a therapeutic approach to these defects may be, at least in some cases, simpler than anticipated,” he said.

    Levin speculates that in the future, we may not need to micromanage multitudes of cell-signaling events; instead, we may be able to manipulate how cells communicate with each other electrically and let them fix various problems.

    Another recent experiment hinted at just how significant the developing brain’s bioelectric signal might be. Herrera-Rincon soaked frog embryos in common drugs that are normally harmless and then removed their brains. The drugged, brainless embryos developed severe birth defects, such as crooked tails and spinal cords. According to Levin, these results show that the brain protects the developing body against drugs that otherwise might be dangerous teratogens (compounds that cause birth defects). “The paradigm of thinking about teratogens was that each chemical is either a teratogen or is not,” Levin said. “Now we know that this depends on how the brain is working.”

    The body of a tadpole normally develops with a predictable structure (A). Removing a tadpole’s brain early in development, however, leads to abnormalities in tissues far from the head (B).

    These findings are impressive, but many questions remain, said Adam Cohen, a biophysicist at Harvard who studies bioelectrical signaling in bacteria. “It is still unclear precisely how the brain is affecting developmental patterning under normal conditions, meaning when the brain is intact.” To get those answers, researchers need to design more targeted experiments; for instance, they could silence specific neurons in the brain or block the release of specific neurotransmitters during development.

    Although Levin’s work is gaining recognition, the emphasis he puts on electricity in development is far from universally accepted. Epigenetics and bioelectricity are important, but so are other layers of biology, Zhao said. “They work together to produce the biology we see.” More evidence is needed to shift the paradigm, he added. “We saw some amazing and mind-blowing results in this bioelectricity field, but the fundamental mechanisms are yet to be fully understood. I do not think we are there yet.”

    But Nuccitelli says that for many biologists, Levin is on to something. For example, he said, Levin’s success in inducing the growth of misplaced eyes in tadpoles simply by altering the ion flux through the local tissues “is an amazing demonstration of the power of biophysics to control pattern formation.” The abundant citations of Levin’s more than 300 papers in the scientific literature—more than 10,000 times in almost 8,000 articles—is also “a great indicator that his work is making a difference.”

    The passage of time and the efforts of others carrying on Levin’s work will help his cause, suggested David Stocum, a developmental biologist and dean emeritus at Indiana University-Purdue University Indianapolis. “In my view, his ideas will eventually be shown to be correct and generally accepted as an important part of the framework of developmental biology.”

    “We have demonstrated a proof of principle,” Herrera-Rincon said as she finished preparing another petri dish full of beanlike embryos. “Now we are working on understanding the underlying mechanisms, especially the meaning: What is the information content of the brain-specific information, and how much morphogenetic guidance does it provide?” She washed off the scalpel and took off her gloves and lab coat. “I have a million experiments in my mind.”

    Original story reprinted with permission from Quanta Magazine, an editorially independent publication of the Simons Foundation whose mission is to enhance public understanding of science by covering research developments and trends in mathematics and the physical and life sciences.

    Read more:

    Read More

    This Is the Smart Home of the Future

    Don’t worry: Technology may come and go, but some things never change. In the not-so-distant future, cars will drive themselves and men may become obsolete (sorry, guys), but home will always be home. It’ll just be a heck of a lot smarter.

    Photographer: Evan Ortiz/Bloomberg

    Granted, some tech is better than other tech. No one needs a Wi-Fi-connected juice press that doesn’t actually juice anything. Gadgets that offer real utility—like a smart oven or open source furniture—stand a better chance of becoming ubiquitous. If you’re skeptical, think of it this way: In-home refrigeration was the crazy, newfangled invention of 1913. Now, few among us can imagine living without it.

    What will the home of the future look like? We took stock of the most exciting tech-forward home products on the market. It’s only a matter of time until at least some of these come standard in every American home.


    The High-Tech Living Room

    Apple’s HomePod.
    Source: Apple

    Thirty-nine million Americans now have a smart speaker in their homes—that’s 1 in 6 people—and all signs indicate this figure will only creep higher with time. In the living room of the future, smart speakers will be a central feature, with newer models connected to every element in your home, from the lightbulbs to the lock on your front door to the thermostat. They will become so essential you won’t think twice about plunking down $400 for one.

    Watching TV and movies will be a wildly different experience. Why devote precious square footage in your living room to a giant screen when you could have one that effortlessly rolls up away and out of sight, like the one LG Display debuted at this year’s CES? Or you may choose not to have a TV at all and opt instead for a superhigh-resolution short-throw projector that turns any white wall into your own personal movie theater. Sony’s new $30,000 model would fit the bill, assuming the price tag comes down.

    Open source furniture from Tom Dixon via Ikea.
    Source: Modsy

    In the coming years, it’ll be much easier to design your living space. Apps and online platforms such as Modsy and Hutch will use virtual and augmented reality to help you visualize how a couch or chair will look in your home. You’ll have lots of options: Modular, open source furniture will dominate interior design trends, taking the lead from Ikea’s Tom Dixon-designed Delaktig couch, which has more than 97 different configurations. Choose wisely, because you’ll be spending more time on the couch than ever: Facebook Inc.’s forthcoming living-room-geared video chat device will reportedly use smart camera technology to make people on both ends feel like they’re sitting in the same room.

    Also, expect your living room to be even more of a central hub than it already is. Deliveries will arrive here instead of on your front porch, thanks to’s new Prime service, which will let verified delivery persons carry goods right into your home.

    And don’t for a minute think ultramodern gadgetry is only for the younger set: Homes for the elderly will be outfitted with internet-connected gear that allows adult children to monitor their aging parents.

    Smart Cooking in the Kitchen

    The June intelligent oven.
    Photographer: Evan Sung/Bloomberg

    Ultimately, the goal of kitchen technology won’t be to do the cooking for you. It’ll just make you a better cook. Smart ovens such as those from June will be outfitted with cameras and digital thermometers, helping you monitor your food as it bakes. And instead of just hoping the “medium-hot” setting on your gas range is hot enough, smart skillets will take guessing out of the equation by sizzling food at a precise temperature, which you’ll set on a connected app.

    Smart refrigerators will help reduce waste by letting you know when the carrots in your fridge are about to go bad, and offer up several recipes for them to boot. The smart fridge from LG will even send cooking instructions to your smart oven. Meanwhile, 3D food printers will help you create intricately shaped pasta, and smart-technology-equipped ice cream makers will automatically sense the hardness of the mixture within and keep it ready until it’s sundae time.

    Tech Enters the Bedroom

    Eight Sleep’s smart mattress.
    Source: Eight Sleep

    The latest wave of home-focused technology is about making everyday life better and easier, and that begins with a good night’s sleep. Sleep trackers such as Eight’s smart mattress and smartphone apps Sleep Time and Sleep Cycle will use sensors to measure your sleep metrics, while smart alarm clocks like Amazon’s mini Echo will help you begin your day on the right foot with time, weather, and news.

    Need a gentler wake-up? The smart aromatherapy alarm clocks from Nox Aroma will sense when you’ve reached your sleep cycle’s lightest point and release a wake-up scent of your choice.

    Once you’re up and moving, it’s time to get dressed: Your closet will be filled with clothes you don’t just wear. They will actually interact with you, tracking health markers and habits. Among them: MadeWithGlove’s still-in-development smart gloves, which promise to detect skin temperature and provide heat accordingly. Your clothes might even change shape or color based on your feelings, as will the Sensoree mood sweater, now available for preorder.

    And if you want a new wardrobe, you won’t have to even leave the house to find the best-fitting clothes: Amazon’s patented mirror will let you virtually try on outfits from the comfort of your own bedroom.

    Yes, Even in the Bathroom

    Moen’s smart shower system can be operated with Amazon’s Alexa.
    Source: Moen

    In the future, spa-like experiences at home will be the norm. No need to draw your own bath—your digital assistant can do that for you with smart shower systems like those from U by Moen. High-tech tubs such as those from Toto will induce relaxed brain waves, while nose-geared gadgets like Olfinity will let you program and control your own aromatherapy session from your iPhone while you soak.

    Sound far-fetched? Remember a decade ago, few of us could have imagined being so attached to our smartphones, let alone ordering groceries off the internet or barking commands at a digital assistant. With time, even the strangest things can become normal.

      Read more:

      Read More

      The Many Faces of Five Star Are Winning Votes All Over Italy

      In Daniele Abate’s Sicilian home town, many people don’t even have running water, and he blames the politicians. So the former cook will be voting for Five Star on March 4.

      At the other end of the country, across the economic divide that runs through Italy, a third of small company owners in Vicenza plan to do the same, according to Luigino Bari, who runs a local business association. They want tax cuts and deregulation, he says.

      As an uncertain country gears up for a crucial election, the anti-establishment Five Star Movement is demonstrating a rare ability to appeal to disaffected voters across geography and social strata. Its eclectic mix of environmentalism, euro-skepticism and widely questioned promises on taxes and benefits offers something for anyone with an ax to grind about the way Italy has been run.

      Luigi Di Maio, leader of Five Star.
      Photographer: Tiziana Fabi/AFP via Getty Images

      “It’s a catch-all party,” said Piergiorgio Corbetta, a political science professor at the University of Bologna. “There are many reasons to vote for Five Star.”

      With four weeks to go, polls show Five Star may have provided enough reasons to secure one of the biggest victories yet for populists in western Europe. With an outright majority still a distant prospect and few natural allies in parliament, the party is still likely to be kept out of office by an alliance of establishment groups. But their success highlights the challenge facing the next administration.

      “Whatever color of government Italy ends up with, they will weigh heavily on the debate,” said Marc Lazar, a professor at Sciences Po in Paris. “When you take almost 30 percent of the vote, you are a reality that must be dealt with.”

      Since starting as an internet-based campaign group in 2009, Five Star’s rise has been driven by support in places like Abate’s home region of Trapani, which was found to have the lowest quality of life among Italy’s 110 provinces by La Sapienza University last year.

      Abate has been living off a 280-euro ($350) disability pension each month since his knee gave out a few years ago, forcing him to give up kitchen work. He’s 53, but looks older and struggles to stand. For Abate, the appeal of Five Star is its pledge to take on the privileges of lawmakers and civil servants in Rome.

      QuicktakeItaly’s Election

      “We work for many years and barely get a thing,” he said, sitting in the main square of his hometown of Alcamo near a 17th century church. “They serve for a few months and can retire.’’

      The key to electoral success for Five Star leader Luigi Di Maio will be pushing into Italy’s wealthier north. While the party won 40 percent of the vote in Trapani in the last national elections 2013, it got 25 percent in the manufacturing center of Vicenza near Venice.

      Vicenza’s entrepreneurs are also frustrated with the status quo, regardless of the recent pickup in growth. They are demanding cuts to business taxes and regulations, and investment in the single-lane roads crowded with trucks carrying products from the region’s factories.

      “It’s clear that the traditional parties have made promises that they haven’t kept,” said Bari, 64, who wouldn’t say who he’ll be voting for.

      Roberto Castiglion
      Source: Comune di Sarego

      Just down the road, the 7,000 inhabitants of Sarego elected the first Five Star mayor in the northeastern Italy in 2012. Roberto Castiglion, a 37-year-old IT manager, was re-elected last year with an increased vote.

      Most of Castiglion’s work as mayor has involved the environment, installing solar panels and increasing recycling, but he says the party is very keen to help local businesses which ship factory machinery, adult diapers and leather goods around the world.

      “In this country, we are drowning in norms and regulations,” he said.

      “Five Star is saying the right things to small businesses, but there is some hesitancy,” said Remigio Bisognin, the 63-year-old founder of a 14-employee Sarego firm that stamps plastic parts. “We don’t really know these people.’’

      One source of concern for business leaders has been Five Star’s past threats to pull Italy out of the euro. Bisognin says mistakes were made introducing the single currency but it’s too late to go back now, and Di Maio has walked back his comments. It’s a move that broadens the party’s appeal in the north without hurting its base in the south.

      “The euro is not something we worry about,” said Gaetano Milazzo, a 40-year-old tax collector as he talked to friends where the warren of narrow streets opens out into Alcamo’s square. “Some houses here get water one day a week and there’s hardly any public transport.”

      Indeed, parts of the sprawling town of 45,000 aren’t even connected to the water mains and Domenico Surdi, the 34-year-old lawyer Five Star mayor since in 2016, says the existing pipes hadn’t been maintained for decades when he took office.

      With no budget for repairs, Surdi has had to improvise. He’s aiming to raise the amount of garbage that’s recycled to 70 percent from about 60 percent to save about 1 million euros a year on trash hauling.

      “We’ve been mismanaged for so long,” said Abate. “The problems won’t go away overnight.”

        Read more:

        Read More

        A different dimension of loss: inside the great insect die-off

        The long read: Scientists have identified 2 million species of living things. No one knows how many more are out there, and tens of thousands may be vanishing before we have even had a chance to encounter them

        The Earth is ridiculously, burstingly fullof life. Four billion years after theappearance of the first microbes, 400myears after the emergence of thefirst life on land, 200,000 years after humans arrived on this planet, 5,000 years (give or take) after God bid Noah to gather to himself two of every creeping thing, and 200 years after we started to systematically categorise allthe worlds living things, still, new species are being discovered by the hundreds and thousands.

        In the world of the systematic taxonomists those scientists charged with documenting this ever-growing onrush of biological profligacy the first week of November 2017 looked like any other. Which is to say, it was extraordinary. It began with 95 new types of beetle from Madagascar. But this was only the beginning. As the week progressed, it brought forth seven new varieties of micromoth from across South America, 10 minuscule spiders from Ecuador, and seven South African recluse spiders, all of them poisonous. A cave-loving crustacean from Brazil. Seven types of subterranean earwig. Four Chinese cockroaches. A nocturnal jellyfish from Japan. A blue-eyed damselfly from Cambodia. Thirteen bristle worms from the bottom of the ocean some bulbous, some hairy, all hideous. Eight North American mites pulled from the feathers of Georgia roadkill. Three black corals from Bermuda. One Andean frog, whose bright orange eyes reminded its discoverers of the Incan sun god Inti.

        About 2m species of plants, animals and fungi are known to science thus far. No one knows how many are left to discover. Some put it at around 2m, others at more than 100m. The truescope of the worlds biodiversity is one of the biggest and most intractable problems in the sciences. Theres no quick fixor calculation that can solve it, just a steady drip of new observations of new beetles and new flies, accumulating towards a fathomless goal.

        An Oxysternon conspicillatum dung beetle from South America. Photograph: Alamy

        But even as thousands of new species are being discovered every year, thousands more seem to be disappearing, swept away in an ecological catastrophe that has come to be known as the sixth extinction. There have been five such disasters in the past. The most famous (and recent) is the end-Cretaceous extinction, the one that killed off the dinosaurs 66m years ago. The most destructive was the Permian, the one that cleared the way for the dinosaurs 190m years before that.

        To know if we are really in the midst of a sixth extinction, scientists need to establish both the rate at which species arecurrently vanishing, and the rate at which they would go extinct without human activity (known as the background rate). In 2015, using a census of all known vertebrates, ateamof American and Mexican scientists argued that animalspecies are going extinct up to 100 times faster thanthey would without us a pace of disappearance on aparwith the extinction that took out the dinosaurs.

        But as Terry Erwin, the legendary tropical entomologist, pointed out to me, these sixth-extinction estimates are biased towards a very small portion of biodiversity. When it comes to invertebrates the slugs, crabs, worms, snails, spiders, octopuses and, above all, insects that make up the bulk of the worlds animal species we are guessing. Conservationists are doing what they can, without data on insects, he said.

        To really know whats going on with the state of the worlds biodiversity, ecologists need to start paying more attention tothe invertebrates and spend less time on the cute and cuddlies Erwins term for the vertebrates. (Years of hearing about the wonders of gorillas and humpback whales can make a staunch bug man resentful.) After all, there are far, far more of them than there are of us.

        We live in an invertebrate world. Of all known animal species, less than 5% have backbones. About 70% are insects. Fewer than one in every 200 are mammals, and a huge proportion of those are rodents. Looked at from the point of view of species diversity, we mammals are just a handful of mice on a globe full of beetles. The great majority of those beetles are herbivores native to the tropics. So if you really want to understand the total diversity of life on Earth and the true rate at which it is disappearing you need to figure out how many types of beetle munch on every variety of tropical tree.

        But before you can count species, you have to name them. Thats where the taxonomists come in. The idea of species has been notoriously hard for biologists to define, especially since organisms so often exist on a continuum, becoming harder and harder to distinguish the closer they are to each other. The most widely accepted definition comes from the evolutionary biologist Ernst Mayr, who defined species as groups of animals that breed with one another, but not with others at least not in the regular course of events. (If you force a zebra and a donkey together to make a zonkey, youve created one hybrid, not disproved the fact that they are two different species, since such a mating would not normally occur in nature.)

        Taxonomists do not just name individual species; they also have to figure out how species are related to each other. Over the centuries, many scientists have tried to fit the worlds creatures into a coherent system, with mixed results. Aristotle tried to classify all life forms based on their essential traits, and in particular, the way they moved. Sedentary animals gave him the most trouble. He seems to have spent a lot of time on the island of Lesbos, puzzling over whether sea anemones and sponges were animals, plants, or plant-like animals.

        The real revolution in taxonomy came in the 18th century, during the age of Enlightenment. It was largely the work of one man, Carl Linnaeus, who was hailed as the Isaac Newton of biology. Linnaeus was an odd figure to rise to such heights: a brilliant, headstrong, egotistical showoff with a prodigious knack for remembering the sexual characteristics of plants. He made one major expedition to Lapland, in Swedens north but mostly relied on the discoveries of others. He inspired 17 apostles to venture into the world in search of specimens to complete his system. Seven never came home. Based on their collective work, he named 7,700 species of plants and 4,400 species of animals.

        Later biologists found much to quibble with in Linnaeuss system. For instance, he grouped hedgehogs and bats together as ferocious beasts, and shrews and hippos together as beasts of burden. Linnaeuss lasting achievement was not increating the groups themselves, but the system by which allsubsequent species would be named. He decreed that all species should have a two-part name. The first part indicates the genus to which a species belongs, and the second part is the species name.

        The Neopalpa donaldtrumpi moth. Photograph: Vazrick Nazari/ZooKeys

        This is a brilliantly efficient system for both naming and sorting. With it, we can tell in an instant that we, Homo sapiens, are both related to, and distinct from, our evolutionary relatives Homo erectus and Homo habilis. It is also a source of considerable fun for taxonomists. Presidential names the bushi, obamai and donaldtrumpi (a remarkably coiffed moth) reliably grab headlines. Less frequently, species names invoke politics or recent events. A Brazilian mayfly received the species name tragediae, to commemorate the catastrophic collapse of a dam in 2015. Taxonomists are also not above the occasional pun or rhyme. Terry Gosliner, an expert on nudibranchs, or marine sea slugs, once giving the name Kahuna to a species belonging to genus Thurunna from Hawaii, to make Thurunna kahuna.

        Gosliner found his first nudibranch while still at high school. Since then he has travelled the world in search of them, and has named more than 300 in his 40-year career. As denizens ofcoral reefs, sea slugs are particularly sensitive to rising sea temperatures. Some scientists think climate change and ocean acidification might cause reefs to vanish entirely in the next 50 to 100 years. Gosliner tends to be a bit more optimistic, emphasising the reefs ability to bounce back from stress. But while corals reefs face peril in the seas, an even greater crisis could be developing for insects on land the true dimensions of which entomologists are only beginning to grapple with.

        Before entomologists could ponder the terrifying possibility of an insect mass extinction, they first had to come to grips with the true scale of insect diversity. They are still struggling to do that now. But for many, the breakthrough moment camein 1982, with a brief paper published by a young beetle specialist named Terry Erwin.

        Erwin wanted to figure out how many species of insect lived on an average acre of rainforest in Panama, where he wasworking. To do this, he covered a single tree in sheeting and fogged it, by blasting it with insecticide from a device resembling a leafblower. He waited several hours while dead bugs cascaded on to the plastic sheeting he had spread on the ground. He then spent months counting and sorting them all. What Erwin found was startling: 1,200 species lived on this one tree. More than 100 lived on this particular tree and nowhere else. Scaling this result up, Erwin estimated that there are 41,000 different species in every hectare of rainforest, and 30m species worldwide.

        This estimate quickly became famous, and controversial. Erwin is widely respected in the field. He has been commemorated in the names of 47 species, two genera, one subfamily and one subspecies a good gauge of respect in the entomological community, where, according to the International Commission on Zoological Nomenclature, naming a species after yourself is forbidden by custom, but not law. Still, many entomologists are sceptical about Erwins wilder estimates, and more recent studies have tended to revise the 30m number down somewhat. But Erwin remains intransigent. Its like Wyatt Earp and Billy the Kid, these kids out here taking potshots at me. None of them have any data, he told me recently. Theyre just sitting in that office throwing numbers around. He thinks the real number might be as highas 80m, or even 200m and that a large number of these species are in the process of vanishing without anyone being around to even notice.

        A nudibranch sea slug, Chromodoris kuniei, from the Solomon Islands. Photograph: Alamy

        Everywhere, invertebrates are threatened by climate change, competition from invasive species and habitat loss. Insect abundance seems to be declining precipitously, even inplaces where their habitats have not suffered notable new losses. A troubling new report from Germany has shown a75%plunge in insect populations since 1989, suggesting thatthey may be even more imperilled than any previous studies suggested.

        Entomologists across the world have watched this decline with growing concern. When Brian Fisher, an entomologist at the California Academy of Sciences with a particular expertise in ants, arrived in Madagascar in 1993, he expected he would be able to describe some new species, but he had no idea of the extent of the riches he would find there. Everything was new. It was like it was in the 1930s, Fisher said. In that time, he has identified more than 1,000 new species of ant, including some whose adults feed exclusively on the blood of their own young, agroup he has nicknamed the Dracula ants.

        A thousand ants is quite a lot, but scientists have identified 16,000 species so far. To a layperson like me, they all seem basically alike. Some are brown, some are black, some are cinnamon-coloured, but other than that, they look pretty much like the (invasive, Argentine) ants that swarm my kitchen in California every time it rains. To an expert like Fisher though, they are as different from one another as warblers are to a birder. Under a microscope, each ant positively bristles with identifying features in their flagellate hairs, their segmented antennae, and most of all, in their mandibles, which under magnification look like diabolical garden shears.

        In the decades since Fisher started making expeditions to Madagascar, deforestation has accelerated, and today only 10% of its virgin forests remain intact. Fisher says that in 50years I cant imagine any forest left in Madagascar. According to Wendy Moore, a professor of entomology at the University of Arizona, who specialises in ant nest beetles, There is a sense of running out of time. Everyone in the field who is paying attention feels that. Because many insects depend on a single plant species for their survival, the devastation caused by deforestation is almost unimaginably huge. Once a certain type of forest vanishes, thousands, or tens of thousands, or hundreds ofthousands of species will vanish, Erwin told me. Deforestation is taking out untold millions of species.

        While we still dont have a clear idea of whats happening to insects at the species level, we are in the midst of a crisis at the population level. Put simply, even if many kinds of insects are holding on, their overall numbers are falling drastically. The alarming new data from Germany, which was based on tracking the number of flying insects captured at a number of sites over 35 years, is one warning sign among many. According to estimates made by Claire Rgnier of the French Natural History Museum in Paris, in the past four centuries, as many of 130,000 species ofknown invertebrates may have already disappeared.

        Various kinds of anecdotal evidence appear to support these observations. The environmental journalist Michael McCarthy has noted the seeming disappearance of the windscreen phenomenon. Once, he writes, any long automobile journey, especially one undertaken in summer, would resultin a car windscreen that was insect-spattered. In recentyears this phenomenon seems to have vanished.

        A violin beetle, Mormolyce phylloies. Photograph: Alamy

        Although insecticides have been blamed for the declines in Europe, Erwin thinks the ultimate culprit is climate change. The location he has been observing in Ecuador is pristine, virgin rainforest. Theres no insecticides, nothing at all, hesaid. But gradually, almost imperceptibly, in the time he has been there, something has changed in the balance of the forest. Studying the data, Erwin and his collaborators have found that over the past 35 years, the Amazon rainforest has been slowly dying out. And if the forest goes, Erwin tells me, everything that lives in it will be affected.

        If this trend were to continue indefinitely, the consequences would be devastating. Insects have been on Earth 1,000 times longer than humans have. In many ways, they created the world we live in. They helped call the universe of flowering plants into being. They are to terrestrial food chains what plankton is to oceanic ones. Without insects and other land-based arthropods, EO Wilson, the renowned Harvard entomologist, and inventor of sociobiology, estimates that humanity would last all of a few months. After that, most of the amphibians, reptiles, birds and mammals would go, along with the flowering plants. The planet would become an immense compost heap, covered in shoals of carcasses and dead trees that refused to rot. Briefly, fungi would bloom in untold numbers. Then, they too would die off. The Earth would revert to what it was like in the Silurian period, 440m years ago, when life was just beginning to colonise the soil a spongy, silent place, filled with mosses and liverworts, waiting for the first shrimp brave enough to try its luck on land.

        Conserving individual insect species piecemeal, as is done with most endangered mammals, is extremely difficult. Not only are the numbers mind-boggling, but insects and other invertebrates dont tend to have the same cachet. Polar bears and humpback whales are one thing; soft-bodied plant beetles from the Gaoligong mountains of Yunnan are quite another.

        Not long ago, I took a trip to the first wildlife refuge established with the express purpose of protecting an endangered insect, the Antioch Dunes National Wildlife Refuge, about an hours drive north-east of Berkeley, California. The reserve is small only 55 acres, hemmed in on three sides by a chain-link fence, and by the San Joaquin river on the fourth and, in truth, the Dunes do not dazzle the eye. The terrain resembles an unlovely, overgrown plot of land intended for development at some unspecified point in the future. The day I went, three vultures huddled around the body of a cat while the turbines of a wind farm spun lazily on the opposite bank of the river.

        Once, however, these dunes were a miniature Sahara, home to a number of animals and plants that existed nowhere else. It took decades before that fact became apparent to biologists, and by then, it was very nearly too late. When white settlers arrived in California, the dunes were seen simply as a source of raw materials. The dune sand was unusually well-suited for brickmaking, and between the San Francisco earthquake of 1906 and the postwar housing boom, most of the sand was mined out and turned into buildings. Once the dunes were gone, most of the land they formerly stood on was built up.

        It wasnt until the 1960s that biologists began to realise howspecial the Antioch Dunes were. By that point, only three native species remained. There were two plants the Contra Costa wallflower and the Antioch Dunes evening primrose and one insect, the Langes metalmark butterfly. The metalmark butterfly is tiny, with a wingspan about the size of thumbnail. A pretty brown-and-orange with white spotting, they are weak flyers, capable of travelling a maximum 400 metres (1,300ft) after they emerge from their chrysalises forseven to nine days every August.

        A black garden ant, Lasius niger. Photograph: Alamy

        After the Dunes Reserve was established in 1980, the butterfly enjoyed a brief resurgence. Today, it is struggling. Atlast count, there were only 67 individuals in the park. The Langes lay their eggs on one plant and one plant only: the naked-stemmed buckwheat, which is currently being choked out by weeds. The only other population of Langes is kept in acaptive-breeding programme at Moorpark College in Simi Valley, California. If something should happen to these, it would be the end of the species.

        In a bid to save the butterfly, the US Fish and Wildlife Service has recently begun a bold experiment in habitat restoration, covering much of the refuge in sand. Spread a metre deep, thesand suffocates invasive plants, allowing the species that originally evolved on the dunes to reclaim their lost ground. If we can bring back the environment, we can bring back the butterfly, wildlife refuge manager Don Brubaker told me. The day I visited, his co-worker, refuge specialist Louis Terrazas, spotted a hopeful sign. The seasons first shoots of native primrose had just started peeking out above the sand. Given time, this remnant of a remnant might spring back to life.

        When I asked Brubaker if his painstaking efforts on behalf of the Langes was worth all the trouble, he replied: Why protect the species? Why not? Because its what we do wereenabling the planet to keep functioning.

        In some ways, the tiny ranges of invertebrates like the Langes Metalmark Butterfly make them perfect targets for protection. Sarina Jepsen is the director of endangered species and aquatic conservation at the Xerces Society, a Portland, Oregon-based non-profit focusing on invertebrates. She told me that for insects, often small patches of land can make ahuge difference, unlike what is needed for, say, wolf or tigerconservation. We dont necessarily need hundreds of thousands of acres to make a difference with these species, she said. Even so, the amount of work that goes into saving even asingle species can sometimes feel overwhelming. It isnt enough to save one in a lab. You have to rescue whole environments the products of complex interactions betweenplants, animals, soil and climate that have built upover millennia.

        At a certain point, it becomes clear that to even think about extinction in terms of individual species is to commit an error of scale. If entomologists most dire predictions come true, the number of species that will go extinct in the coming century will be in the millions, if not the tens of millions. Saving them one at a time is like trying to stop a tsunami with a couple of sandbags.

        Like many of the species they study, taxonomists are presently at risk ofbecoming a dying breed. Faculty hires, museum posts and government grants are all declining. Fewer students are drawn to the field as well. All too often, taxonomy gets dismissed as old-fashioned and intellectually undemanding, the scientific equivalent of stamp collecting. Molecular biology, with its concern for DNA, proteins and chemical processes within individual cells, dominates curriculums and hoovers up grant money. All the university courses are oriented towards it, andso is the funding, says Terry Erwin.

        Meanwhile, the new species keep piling up. Already today, as Im writing, ZooKeys and Zootaxa, two of the largest and most prolific taxonomic journals, have announced the discovery of a potter wasp from South America, a water scavenger beetle from the Tibetan plateau, an erebid moth, an Andean scarab beetle, two Korean crustaceans and awhole genus of parasitoid wasps (dont worry, were safe the bastards prey on aphids), and it isnt even noon yet.

        What to do with this onrush? Many taxonomists I spoke to admit that it simply isnt manageable. Brian Fisher confessed that many taxonomists find themselves awed at some point bythe immensity of what we dont know. Kipling Will, of the University of California, Berkeley, who has spent two decades studying one subfamily of ground beetles, told me, while gesturing at boxes of samples that had just flown in from Australia: We do what we can. I have so much undescribed material. It takes decades just to get where we are. With any species, it takes time to do a proper dissection, test their DNA, compare them to their nearest relatives, and compile all the information necessary to publish something as new. With so many invertebrates being found each year, its common for them to spend years, or even decades, in a queue waiting for their coming-out party.

        A long-legged spider crab, Macropodia rostrata. Photograph: Alamy

        So what to do? And why bother? There are plenty of practical reasons to worry about the fate of invertebrates. They are avital part of the ecosystems that function as the heart, lungs and digestive system of our planet. Some might carry, inside their exotic biochemistries, cures forany number of diseases. Recently, chemicals harvested from sea slugs have been tested in clinical trials in the US for use as cancer-fighting drugs. Others could be used as natural alternatives to pesticides. But ultimately, its not certain that any of these will be enough on its own. The answer could havemore to do with aesthetics, or enthusiasm for the living world the quality EO Wilson named biophilia.

        When you ask people who work in invertebrate taxonomy why they have devoted their lives to a particular type of insect, snail or clam, the word you hear most often is beautiful. Their eyes light up in front of their chosen genus or subclass. The occupants of a case full of slightly iridescent, mostly black beetles will be described as rather huge and incredibly beautiful. (Huge is relative, too they are the size of the final joint of a little finger.) Surrounded by jars full of tiny sea slugs, they will gush about their beauty and the glorious variety of their colour, shape and behaviour. Amy Berkov, a professor of tropical ecology at the City College of New York who works on wood-boring beetles, came to entomology from a background in art and chose her new field, in part, because theres nothing more amazing than looking at insects. Even theant specialists generally a pretty hard-nosed-bunch willtrade Latin names of rare ants with the affection you usually hear reserved for old friends.

        Its easy to care about the cute and cuddlies. Soon well beliving on a planet that has lost its last mountain gorilla, itslast leatherback turtle. A world without tigers or polar bears; what a sad place that will be.

        But to think about the coming invertebrate extinctions is to confront a different dimension of loss. So much will vanish before we even knew it was there, before we had even begun to understand it. Species arent just names, or points on an evolutionary tree, or abstract sequences of DNA. They encode countless millennia of complex interactions between plant and animal, soil and air. Each species carries with it behaviours we have only begun to witness, chemical tricks honed over a million generations, whole worlds of mimicry and violence, maternal care and carnal exuberance. To know that all this will disappear is like watching a library burn without being able to pick up a single book. Our role in this destruction is a kind of vandalism, against their history, and ours as well.

        Take Strumigenys reliquia, one of the ants I heard discussed with such warmth at the California Academy of Sciences. Strumigenys is a predator, a native of the undergrowth, and very rare. It was first discovered in 1986 by Phil Ward of the University of California, Davis. He spotted this incredibly rare species on a two-hectare patch of woods a few miles from his office. It has never been seen anywhere else. Ward thinks there is a reason for this. California rivers were once flanked by giant forests of hardy, flood-resistant, evergreen oaks. Geologists think these riverine forests were a feature of the landscape for at least 20m years. Accounts from early settlers and explorers give an idea of what they might have been like. They write of flocks of geese blackening the sky, salmon choking the streams and grizzly bears gathering under the oaks to feed on acorns in troupes of a hundred or more.

        Today, except for a few scattered acres like the one Ward found in Yolo County, those forests are gone. They were chopped down long ago for firewood and ploughed under tomake way for tomato farms and almond orchards. The salmon, the geese and the grizzlies have all gone too. Onlytheant remains. Only it remembers.

        Main image: Alamy; Getty; Guardian Design; Sara Ramsbottom

        Follow the Long Read on Twitter at @gdnlongread, or sign up to the long read weekly email here.

        Read more:

        Read More

        How Criminal Courts Are Putting BrainsNot Peopleon Trial

        On July 1, 2013, Amos Joseph Wells III went to his pregnant girlfriend's home in Fort Worth, Texas and shot her multiple times in the head and stomach. He then killed her mother and her 10-year-old brother. Wells surrendered voluntarily within hours, and in a tearful jailhouse interview told reporters, "There's no explanation that I could give anyone, or anybody could give anyone, to try to make it seem right, or make it seem rational, to make everybody understand."

        Heinous crimes tend to defy comprehension, but some researchers believe neuroscience and genetics could help explain why certain people commit such atrocities. Meanwhile, lawyers are introducing so-called neurobiological evidence into court more than ever.

        Take Wells, for instance. His lawyers called on Pietro Pietrini—director of the IMT School for Advanced Studies in Lucca, Italy and an expert on the neurobiological correlates of antisocial behavior—to testify at their client's trial last year. “Wells had several abnormalities in the frontal regions of his brain, plus a very bad genetic profile," says Pietrini. Scans of the defendant's brain showed abnormally low neuronal activity in his frontal lobe, a condition associated with increased risk of reactive, aggressive, and violent behavior. In Pietrini's estimation, that "bad genetic profile" consisted of low MAOA gene activity—a trait long associated with aggression in people raised in abusive environments—and five other notable genetic variations. To differing degrees, they're linked with a susceptibility to violent behavior, impulsivity, risk-taking, and impaired decision-making.

        "What we tried to sustain was that he had some evidence of a neurobiological impairment that would affect his brain function, decision making, and impulse control," Pietrini says. "And this, we hoped, would spare him from the death penalty."

        It did not. On November 3, 2016, a Tarrant County jury found Wells guilty of capital murder. Two weeks later, the same jury deliberated Wells' fate for just four hours before sentencing him to die. The decision, as mandated by Texas law, was unanimous.

        In front of a different judge or another jury, Wells might have avoided the death penalty. In 2010, lawyers used a brain-mapping technology called quantitative electroencephalography to try to convince a Dade City, Florida jury that defendant Grady Nelson was predisposed to impulsiveness and violence when he stabbed his wife 61 times before raping and stabbing her 11-year-old daughter. The evidence's sway over at least two jurors locked the jury in a 6-6 split over whether Nelson should be executed, resulting in a recommendation of life without parole.

        Nelson's was one of nearly 1,600 court cases examined in a recent analysis of neurobiological evidence in the US criminal justice system. The study, by Duke University bioethicist Nita Farahany, found that the number of judicial opinions mentioning neuroscience or behavioral genetics more than doubled between 2005 and 2012, and that roughly 25 percent of death penalty trials employ neurobiological data in pursuit of a lighter sentence.

        Farahany's findings also suggest defense attorneys are applying neuroscientific findings to more than capital murder cases; lawyers are increasingly introducing neuroscientific evidence in cases ranging from burglary and robbery to kidnapping and rape.

        "Neuro cases without a doubt are increasing, and they're likely to continue increasing over time" says Farahany, who adds that people appear to be particularly enamored of brain-based explanations. "It’s a much simpler sell to jurors. They seem to believe that it’s much more individualized than population genetics. Also, they can see it, right? You can show somebody a brain scan and say: There. See that? That big thing, in this person’s brain? You don’t have that. I don’t have that. And it affects how this person behaves.”

        And courts seem to be buying it. Farahany found that between 20 and 30 percent of defendants who invoke neuroscientific evidence get some kind of break on appeal—a higher success rate than one sees in criminal appeals, in general. (A 2010 analysis of nearly 70,000 US criminal appeals found that only about 12 percent of cases wound up being reversed, remanded, or modified.) At least in the instances Farahany investigated (a small sample, she notes, of criminal cases, 90 percent of which never go to trial), neurobiological evidence seemed to have a small but positive impact on defendants' outcomes.

        The looming question—scientifically, legally, philosophically—is whether it should.

        Many scientists and legal experts question whether neurobiological evidence belongs in court in the first place. "Most of the time, the science isn’t strong enough," says Stephen Morse, professor of law and psychiatry at the University of Pennsylvania.

        Morse calls this the "clear cut" problem: Where the defendant's mental and behavioral state are obvious, you don’t need neurobiological evidence to support it. But in cases where the behavioral evidence is unclear, the brain data or genetic data aren't exact enough to serve as diagnostic markers. "So where we need the help most—where it’s a gray area case, and we’re simply not sure whether the behavioral impairment is sufficient—the scientific data can help us least," says Morse. "Maybe this will change over time, but that’s where we are now.”

        You don't have to look hard to see his point. To date, no brain abnormality or genetic variation has been shown to have a deterministic effect on a person's behavior, and it's reasonable to assume that one never will. Medicine, after all, is not physics; your neurobiological state cannot predict that you will engage in violent, criminal, or otherwise antisocial activity, as any researcher will tell you.

        But some scientific arguments appear to be more persuasive than others. Brain scans, for example, seem to hold greater sway over the legal system than behavioral genetic analyses. "Most of the evidence right now suggests that genetic evidence, alone, isn’t having much influence on judges and juries," says Columbia psychiatrist Paul Appelbaum, co-author of a recent review, published in Nature Human Behavior, that examines the use of such evidence in criminal court. Juries, he says, might not understand the technical intricacies of genetic evidence. Conversely, juries may simply believe genetic predispositions are irrelevant in determining someone's guilt or punishment.

        Still another explanation could be what legal researchers call the double-edged sword phenomenon. "The genetic evidence might indicate a reduced degree of responsibility for my behavior, because I have a genetic variant that you don’t, but at the same time suggest that I'm more dangerous than you are. That if I really can't control my behavior, maybe I'm exactly the kind of person who should be locked up for a longer period of time," Appelbaum says. Whatever the reason for genetic evidence's weak impact, Appelbaum predicts its use in court—absent complementary neurological evidence—will decrease.

        That's not necessarily a bad thing. There's considerable disagreement within the scientific community over the influence of so-called gene-environment interactions on human behavior, including ones believed to affect people like Amos Wells.

        In their 2014 meta-analysis of the two most commonly studied genetic variants linked to aggression and antisocial behavior (both of which Wells possesses), Emory University psychologists Courtney Ficks and Irwin Waldman concluded that the variants appear to play a "modest" role in antisocial behavior. But they also identified numerous examples of studies bedeviled by methodological and interpretive flaws, susceptibility to error, loose standards for replication, and evidence of publication bias. "Notwithstanding the excitement that many researchers have felt at the prospect of [gene-environment] interactions in the development of complex traits, there is growing evidence that we must be wary of these findings," the researchers wrote.

        So then. What should a jury consider in the case of someone like Amos Wells? In his expert report, Pietrini cited Ficks and Waldman's analysis—and more than 80 other papers—to emphasize the modest role of genetic variation in antisocial behavior. And in their cross examination, the prosecution went through several of Pietrini's citations line by line, calling for circumspection. They pointed to the Ficks paper, for instance. They also quoted excerpts that cast behavioral genetics findings in an uncertain light. Lines like this one, from a 2003 paper in Nature about the association of gene variants with anger-related traits: "Nevertheless, our findings warrant further replication to avoid any spurious associations for the example due to the ethnic stratification effects and sampling errors."

        Pietrini chuckles when I recount the prosecution's criticisms. "You look at the discussion section of any medical study, and you'll find sentences like that: Needs more research. Needs a larger sample size. Needs to be replicated. Warrants caution. But it doesn't mean that what's been observed is wrong. It means that, as scientists, we're always cautious. Medical science is only ever proven true by history, but Amos Wells, from my point of view, had many genetic and neurological factors that impaired his mental ability. I say that not because I was a consultant to the defense, but in absolute terms."

        Pietrini's point gets to the heart of a question still tackled by researchers and legal scholars: When do scientific findings become worthy of legal consideration?

        The general assumption is that the same standards that guide the scientific community should guide the law, says Drexel University legal professor Adam Benforado, author of Unfair: The New Science of Criminal Injustice. "But I think that probably shouldn't be the case," he says. "I think when someone is facing the death penalty, they ought to have a right to present neuroscientific or genetic research findings that may not be entirely settled but are sound enough to be published in peer reviewed literature. Because at the end of the day, when someone's life is at stake, to wait for things to be absolutely settled is dangerous. The consequences of inaction are too grave."

        That's basically the Supreme Court's stance, too. In the US, the bar for admissibility on mitigating evidence in death penalty proceedings is very low, owing to a Supreme Court ruling in the 1978 trial of Lockett against Ohio. "Essentially, the kitchen sink comes in. And in very few death penalty proceedings will the judge make a searching inquiry into relevance," says Morse, who begrudgingly agrees that neurobiological evidence should be admissible in capital cases, because so much is at stake. "I'd rather it wasn't, because I think it debases the legal process," he says, adding that most neuroscientific and genetic evidence introduced at capital proceedings has more rhetorical relevance than legal relevance.

        "What they’re doing is making what I call the fundamental psycho-legal error. This is the belief that once you have found a partially causal explanation for a behavior, then the behavior must be excused altogether. All behavior has causes, including causes at the biological, psychological, and sociological level. But causation is not an excusing condition." If it were, Morse says, no one would be responsible for any behavior.

        But that is not the world we live in. Today, in most cases, the law holds people responsible for their actions, not their predispositions. As Wells told his relatives in the courtroom after his sentence was handed down: "I did this. I'm an adult. Don't bear this burden. This burden is mine."

        Read more:

        Read More

        Radical new approach to schizophrenia treatment begins trial

        Exclusive: as evidence emerges that schizophrenia could be an immune system disease, two-year trial will use antibody drug currently used for MS

        British scientists have begun testing a radically new approach to treating schizophrenia based on emerging evidence that it could be a disease of the immune system.

        The first patient, a 33-year old man who developed schizophrenia after moving to London from Cameroon a decade ago, was treated at Kings College Hospital in London on Thursday, marking the start of one of the most ambitious trials to date on the biology of the illness and how to treat it.

        During the next two years, 30 patients will receive monthly infusions of an antibody drug currently used to treat multiple sclerosis (MS), which the team hopes will target the root causes of schizophrenia in a far more fundamental way than current therapies.

        The trial builds on more than a decades work by Oliver Howes, a professor of molecular psychiatry at the MRC London Institute of Medical Sciences and a consultant psychiatrist at the Maudsley Hospital in south London. Howess team is one of several worldwide to have uncovered evidence that abnormalities in immune activity in the brain may lie at the heart of the illness for some patients, at least.

        In the past, weve always thought of the mind and the body being separate, but its just not like that, said Howes. The mind and body interact constantly and the immune system is no different. Its about changing the way we think about mental illnesses.

        Recent work by Howes and colleagues found that in the earliest stages of schizophrenia, people experience a surge in the number and activity of immune cells in the brain. As well as fighting infection, these cells, called microglia, have a gardening role, pruning unwanted connections between neurons. But in schizophrenia patients, the pruning appears to become more aggressive, leading to vital connections being lost.

        We studied people in that [initial] phase of the illness and saw microglial changes, said Howes. It shows that its something [happening] very early on and seems to be driving the illness.

        The most extensive pruning appears to occur in the frontal cortex, the brains master control centre, and also the auditory regions, which could explain why patients often hear voices. The frontal cortex indirectly controls the brains levels of dopamine a surge in this brain chemical is thought to explain the delusions and paranoia experienced by those with schizophrenia.

        Nearly all existing medications work by blocking dopamine, which can bring psychotic symptoms under control, but fail to protect the brains basic architecture from damage.

        The current drugs are based on 1950s technology; they all still work in exactly the same way, said Howes. They are only able to target the delusion side of things. Its like getting a sledgehammer and squashing it down.

        Microglial cells, outlined in green stain, have thin processes that reach out around brain cells, stained in red. Photograph: Bloomfield et al

        There is a growing appreciation that other, perhaps less well-known, symptoms associated with schizophrenia memory and cognitive problems, and lack of motivation can have an equally profound impact on patients, and existing drugs do little to help this side of the disease. Its typically [these other] symptoms that are the most disabling, said Toby Pillinger, a psychiatrist and Kings College London researcher involved in the study.

        The latest trial, a collaboration between MRC scientists and Kings College London, involves treating patients with a monoclonal antibody drug, called Natalizumab, that is already licensed for MS. In MS, the brains immune cells go awry by attacking a different aspect of the brains wiring. And although the diseases manifest in very different ways, apparent parallels in the underlying biology raise the possibility that the MS drug might help schizophrenia patients.

        The drug works by targeting microglia and restricting their movement around the brain, which scientists hope could prevent the over-pruning of vital connections. In doing so, it could potentially address the diseases full spectrum of symptoms.

        The first participant, Leopold Fotso, 33, received his first dose of treatment on Thursday. Fotso, who lives in south London after moving from Cameroon in 2007, was diagnosed with schizophrenia four years ago. He has been admitted to hospital several times with psychotic episodes. His illness also forced him to abandon his studies in accountancy which he had moved to the UK to pursue and his part-time kitchen job.

        Leopold Fotso undergoes the first treatment of a new therapy for schizophrenia. Photograph: Teri Pengilley for the Guardian

        He currently has monthly injections of an antipsychotic drug, and his condition is now stable. He feels on the way to being himself again and is looking to slowly start working again. Its quite hard, he said.

        At some time during their life about 1 in 100 people will suffer an episode of schizophrenia. In the UK, about 220,000 people are being treated for the condition by the NHS at any one time.

        In total, in this first trial, 60 patients will be treated for three months, attending clinic once a month for hour-long infusions half will receive the antibody, half a placebo. The patients symptoms will be tracked and, along with 30 healthy volunteers, they will be given a series of brain scans, cognitive assessments and tests of immune activity. The hope is that, even if symptoms do not improve, the study should also answer fundamental questions about the role of the immune system in the illness.

        Belinda Lennox, senior clinical lecturer in psychiatry at the University of Oxford, whose work also focuses on the role of the immune system in schizophrenia, said the concept behind the latest study was exciting although at a very experimental stage. Theres a lot of emerging evidence that the immune system is going wrong [in schizophrenia], she said. If reducing inflammation acts to improve psychosis in this study it will open a new range of treatment possibilities, which is very exciting for the field, and desperately needed.

        Read more:

        Read More

        Major Breakthrough: Scientists At MIT Have Trapped Cancer Underneath A Bowl

        Well, this is officially the best news you’ll read all day! After decades of research, we’re officially closer than ever to finding a cure for one of the most deadly disease on earth: Scientists at MIT have made a major medical breakthrough and have trapped cancer underneath a bowl!

        So much yes! This could be the end of cancer as we know it!

        The miraculous development was reportedly made last week, when five scientists in MIT’s Koch Institute for Integrative Cancer Research stood together and corralled cancer into a corner while one of their colleagues ran to the kitchen to get a bowl to trap it with. After finding an empty glass tupperware that one had brought their lunch in a few days prior, they stuck it over cancer and held it firmly in place.

        While there’s some disagreement in the scientific community about whether cancer should be squished or just left alone and starved to death, scientists unanimously agree that this is the first step toward eradicating the deadly disease!

        This is huge.

        “Now that we have trapped cancer under a bowl, we’ve taken every precaution to prevent its escape,” said Dr. Michael Walden, lead researcher of the MIT lab, who emphasized that cancer had tried to get out through a crack in the bottom but could not. “My colleague currently has his foot firmly on top of the bowl, and as soon as we find something heavy to put on top of the bowl, like a brick or a big book or something, he can take his foot off.”

        Wow, this incredible breakthrough is going to change the lives of so many people affected by this terrible disease. Now that cancer is trapped, let’s just hope that scientists can slide a piece of paper underneath the bowl, flip it over, and get the lid on before it escapes so they can keep cancer there for good!

        Read more:

        Read More