Check out our innovative home and kitchen tools to make cooking and beverages more enjoyable

Style Switcher

Predefined Colors

A Clever New Strategy for Treating Cancer, Thanks to Darwin

In October 1854, a government entomologist was inspecting some farmland outside the town of Ottawa, in northern Illinois, when he came upon a disturbing scene in a cabbage patch.

The large outer leaves of the vegetables were “literally riddled with holes, more than half their substance being eaten away.” With each step he took around the ravaged cabbages, tiny swarms of little ash-gray moths rose from the ground and flitted away. This was, it appears, the first record in the United States of the diamond­back moth, an invasive pest that in its larval form shows a fondness for cruciferous vegetables. By the late 1800s the moths were chewing through the leaves of cabbages, brussels sprouts, collards, and kale from Florida to Colorado.

To fight this invasion, farmers started bombarding their fields with primitive pesticides. This worked. Or seemed to. It killed most of the moths, but those that survived the poison reproduced, and the population bounced back stronger than ever. For decades, one pesticide after another failed as the moths evolved to withstand it. Even the grievously toxic DDT was no match for the diamondback. Beginning in the late 1950s, agriculture experts started to abandon the idea of eradication and adopted a new strategy. Farmers would leave the moths alone until their numbers exceeded a certain threshold, and only then would they deploy pesticides. Remarkably, this helped. The moths did not die out, but the pest could be managed and crop damage held in check.

When Robert Gatenby heard this history of the diamond­back moth in 2008, he immediately latched onto it. Gatenby is not a farmer nor an agronomist nor a fan of cruciferous vegetables—in fact, he deeply loathes brussels sprouts. He is a radiologist by training and heads the radiology department at the H. Lee Moffitt Cancer Center in Tampa, Florida. But unlike your typical doctor, he is also obsessed with the evolutionary principles put forth more than 150 years ago by Charles Darwin. The story of the diamondback moth appealed to Gatenby as a useful metaphor for his own project—one concerned not with crops but with cancer.

Blood in a Mosquito's Belly Could Reveal How Diseases Spread

  • Meet the Carousing, Harmonica-Playing Texan Who Just Won a Nobel for his Cancer Breakthrough

  • The Dying Scientist and His Rogue Vaccine Trial

  • Like the diamondback moth, cancer cells develop resistance to the powerful chemicals deployed to destroy them. Even if cancer therapies kill most of the cells they target, a small subset can survive, largely thanks to genetic changes that render them resistant. In advanced-stage cancer, it’s generally a matter of when, not if, the pugnacious surviving cells will become an unstoppable force. Gatenby thought this deadly outcome might be prevented. His idea was to expose a tumor to medication intermittently, rather than in a constant assault, thereby reducing the pressure on its cells to evolve resistance.

    Just as ecologists allow for a manageable population of diamondback moths to exist, Gatenby’s method would permit cancer to remain in the body as long as it doesn’t spread further. To test this idea, Gatenby got permission in 2014 to run a trial on advanced-stage prostate cancer patients at Moffitt. The patients had cancer that no longer responded to treatment; their drug-resistant cells were winning an evolutionary battle within the body, surviving an onslaught of toxic drugs where weaker cancerous cells had succumbed. The hope was that, by using a precise drug-dosing scheme developed using evolutionary principles, they could slow the rise of the mutations that would endow some cancer cells with the fitness to survive. Gatenby's name for the approach was adaptive therapy.

    One of the patients in the trial was Robert Butler, a British oil-exploration engineer who had retired in Tampa. In 2007 he was diagnosed with prostate cancer, and seven years later, after taking the drug Lupron and getting blasts of radiation, his prostate tumor had progressed to stage 4, advanced cancer. Butler did not give up, though. He tried a newly approved immunotherapy treatment—one that involved having cells from his blood sent by courier to a facility outside Atlanta, where they were mixed with a molecule that activates immune cells, and then shipped back to Florida to be injected back into him. The treatment was expensive—its sticker price can be as high as $120,000—but the threat that the cancer would progress remained.

    When Butler and his wife showed up at his oncologist’s office at the Moffitt Cancer Center in August 2014, they braced for what would come next; they had heard about invasive treatments, like radioactive seed implants. So they were intrigued when the doctor told them about Gatenby’s trial and asked if Butler wanted to participate. He would take a powerful and exceedingly expensive drug called Zytiga, but not in the scorched-earth, kill-all-the-cells fashion that is standard. Instead he would receive only as much Zytiga as was necessary to stop the cancer from growing. The idea was radical and counterintuitive. His last best shot at escaping death from his cancer was to give up on curing it.

    Knowing the modified Zytiga regimen wasn’t designed to rid him of cancer left Butler, the engineer, with a question about how the doctors would measure the success of their new treatment approach. He asked, “How do we know this stuff is working?” And one of his doctors replied, “Well, you won’t be dead.”

    In the United States we use military metaphors when we talk about cancer. We battle and we fight, and if we survive, we’re victorious. The attitude traces back in part to 1969, when the Citizens Committee for the Conquest of Cancer ran an ad in The Washington Post and The New York Times imploring the president with the words “Mr. Nixon: You can cure cancer.” The call to action helped trigger the country’s “war on cancer” with a determination that, using enough medical weaponry, the malignant foe could be obliterated.

    By the mid-1970s, however, signs were beginning to emerge that certain strategies aimed at total eradication were liable to backfire. Against this backdrop, a cancer researcher named Peter Nowell published a seminal paper in Science in 1976. Nowell conjectured that evolutionary forces drive certain cell populations in tumors to become progressively more malignant over time. The cells inside a tumor are in competition, not only with nearby healthy cells, Nowell argued, but also with each other. Nowell suggested—and later research confirmed—that certain DNA alterations grant cancer cells resistance against chemotherapy or other treatments, causing them to edge out drug-­sensitive cells through a process of natural selection.

    Nowell conveyed his ideas to his students at the University of Pennsylvania School of Medicine, sometimes smoking a cigarette as he lectured. His theories were respected but slow to catch on. He emphasized that tumors may become deadlier as they accumulate more genetic errors. It was an idea ahead of its time. Scientists back then didn’t have the technical capability to measure all the changes in the vast genomes of tumor cells. Instead, they could sequence only little tidbits of DNA at a time, and most scientists viewed cancers as the fruit of just a few genetic mutations.

    One of the medical students listening to Nowell lecture in the late 1970s happened to be a young Bob Gatenby. But Nowell’s ideas didn’t make a strong impression on him, Gatenby says; instead, what inspired him was what he witnessed in his first years as a practicing radiologist on the bloody front lines of the war on cancer.

    By the mid-1980s, Gatenby had secured a job at the Fox Chase Cancer Center in Philadelphia. At that hospital and others around the country, clinical trials were putting breast cancer patients through an extreme treatment: a combination of a potentially lethal dose of chemotherapy followed by a bone marrow transplant. The treatment was harrowing. The women had diarrhea and nausea, and some had so much lung damage they had difficulty breathing. Others experienced liver damage and weakened immune systems that left them vulnerable to serious infections. As a radiologist, Gatenby’s job was to interpret x-rays and other scans of the patients, and he saw the treatment failing. Out of more than 30,000 women with breast cancer in the US who underwent the procedure between 1985 and 1998, as many as 15 percent died from the treatment itself. “What happened was these women suffered horribly, and they weren’t cured,” Gatenby says.

    Around the same time as the breast cancer trials, the father of a colleague of Gatenby’s came to the hospital to receive an initial, aggressive round of chemotherapy for lung cancer. According to the colleague, her father arrived on a Friday with no apparent symptoms and was dead by Monday. “That event to me was very traumatizing,” Gatenby recalls, and the cause to him seemed obvious. “I couldn’t understand why you would treat someone with a fatal disease and kill them with your therapy. It just didn’t feel right to me.” During this fraught period, Gatenby’s own father died from esophageal cancer.

    Gatenby felt there must be a better way to treat cancer—to outsmart it rather than carpet-bomb it. He had studied physics in college and believed that biologists could leverage equations to capture the forces driving cancer the same way physicists use math to describe phenomena like gravity. Whereas Nowell had put forth general theories about how cancers followed evolutionary principles, Gatenby was taking a further leap: He wanted to figure out a way to describe the evolution of cancers with mathematical formulas.

    Robert Gatenby, a radiologist, saw patients suffer from intensive breast cancer treatments. He felt there must be a better way to treat cancer, to outsmart it rather than carpet-bomb it.

    Mark Sommerfeld

    By 1989, Bob Gatenby was preoccupied with modeling the evolution of cancers. During the day he would scrutinize the x-rays of cancer patients, and at night, after he and his wife had put their young kids to bed, he would sit at the kitchen table in their suburban Philadelphia home and pore over medical journals. The patterns he started seeing in the literature led him to a question: What if cancer cells outcompete normal, healthy cells in the body in the same way an animal species edges out its competitors in nature?

    Gatenby recalled that ecologists had come up with equations to describe the balance between predators and prey. As an undergraduate at Princeton University, he had learned the classic example of the math that plotted how growing populations of snowshoe hares fuel the rise of the lynx that feed on them. He began dusting off old books and buying new ones to educate himself on species interactions.

    For a year Gatenby read and mulled. Then, in 1990, on a family trip to the Atlantic coast of Georgia, he found himself stuck in a hotel room one afternoon with his two napping children. Out of nowhere, an idea presented itself. He grabbed a pad of hotel stationery and a pen and began scribbling down some key formulas from population ecology. Those formulas, called Lotka-Volterra equations, have been used since the 1920s to model predator-prey interactions and, later, competition dynamics between species, and were among the ones he had recently brushed up on at home. Gatenby thought this set of formulas could also describe how tumor cells compete with healthy cells for energy resources such as the glucose that fuels them.

    When he returned to Philadelphia, he spent what time he could at a typewriter composing a paper that laid out this theoretical model. As soon as he finished, he showed it to some colleagues. He didn’t get the response he had hoped for: They thought it was ridiculous to try to use ecological equations to model cancer. “To say that they hated it would not do justice to how negative they were about it,” he says. His peers thought that a brief set of formulas couldn’t capture cancer’s seemingly infinite complexities.

    Louis Weiner, who worked alongside Gatenby at the time, recalls that their colleagues viewed Gatenby’s ideas as offbeat. “Treatment orthodoxy at that time favored high-intensity, dose-dense treatments aiming to eradicate every last tumor cell in a cancer patient,” says Weiner, who is now director of the Georgetown Lombardi Comprehensive Cancer Center in Washington, DC. “Bob’s perspective was antithetical to those beliefs.”

    But Gatenby pressed on and succeeded in getting the paper, chock-full of Lotka-Volterra equations, accepted in the prominent journal Cancer Research in 1991.

    Despite the publication of his theory, he still couldn’t convince oncologists that his idea had practical merit. “I think that they felt intimidated,” Gatenby says. “Most physicians are mathematically illiterate.” He found that the medical establishment was reluctant to publish much of his follow-up work.

    In the years afterward, Gatenby moved up the ladder to lead the department of diagnostic imaging at Fox Chase Cancer Center. He was later appointed head of the department of radiology at the University of Arizona College of Medicine in Tucson, and he continued to garner recognition for his skilled interpretation of scans and to receive federal grants to study cancer.

    Then, in 2007, the Moffitt Cancer Center offered Gatenby a job as chair of the radiology department. He had a condition: He would come if the hospital created a division where he could pursue in earnest the link between Darwin’s principles and cancer. The Integrated Mathematical Oncology Department, born from this negotiation, is the first math department in a cancer hospital, he says. Finally, Gatenby had a place where he could put his ideas to the test.

    Gatenby arrives at his corner office at Moffitt most days by 7 am. He’s 67 now, and his hair is gray at the temples, but his eyebrows are still brown. His children—the ones who were napping in that hotel room when he jotted down his Darwinian inspiration—now have children of their own, and he has the  “I ♥ Grandpa” coffee mug to prove it. A hospital lanyard around his neck, he rolls up his crisp shirtsleeves and settles down at his desk. Outside his office, roughly 30 scientists and PhD students spend their days researching patterns of cancer growth using equations like those describing population dynamics.

    To Gatenby's knowledge, no one had endeavored to exploit evolution against cancer in a clinical trial until he developed his prostate cancer experiment. He picked prostate cancer to test this approach partly because, unlike other cancers, a routine blood draw for a molecule called prostate-specific antigen (PSA) can offer an immediate proxy for the cancer’s progression.

    To design a clinical trial, Gatenby and his Moffitt collaborators first needed to account for their idea that tumor cells vie against each other for resources. They turned to game theory to plot this dynamic and plugged the numbers into the Lotka-­Volterra equations. The computer simulations they ran with these equations estimated how quickly drug-resistant cells would outcompete other tumor cells when exposed to the continuous dosage of Zytiga typically given to advanced-stage prostate cancer patients.

    In the simulations, the typical administration of the drug led to drug-resistant cancer cells rapidly running rampant. The treatment would ultimately fail each time. That bleak outcome matched up with the results seen in hospital records. In contrast, the computer simulations suggested that if Zytiga were administered only when the tumor seemed to be growing, then the drug-resistant cells would take much longer to gain enough advantage to overrun the cancer.

    In 2014 the Moffitt team managed to get the first small study to test this adaptive therapy approach off the ground, recruiting Robert Butler and a small group of other men with advanced prostate cancer. Butler’s oncologist explained to him how it would work. He would remain on the Lupron he’d taken for years, and each month he would go to the hospital to get his PSA level tested, to judge whether his prostate tumor was growing. Every three months, he would get a CT scan and a full-body bone scan to watch for disease spread. Whenever his PSA level edged above where it stood when he entered the trial, he would start taking the more powerful Zytiga. But when his PSA level fell to under half of the baseline, he could go without Zytiga. This is appealing because Zytiga and drugs like it can cause side effects like hot flashes, muscle pain, and hypertension.

    The Moffitt approach also promised to be far cheaper than taking Zytiga continuously. When purchased wholesale, a one-month supply costs almost $11,000. Butler had health insurance, but even so, his first month’s supply each year would set him back $2,700 in out-of-pocket copayments, and $400 a month thereafter. Going off the drug whenever his PSA level was low would translate to huge cost savings.

    Butler was participating in a so-called pilot trial, which was less rigorous than a large clinical trial, because it didn’t randomly assign patients to receive the experimental or standard treatments. Rather, the study relied on a group of patients treated outside the trial as well as results from a 2013 paper on Zytiga to come up with a benchmark for how patients typically fare when receiving continuous dosing of the drug.

    When the early results of their new trial trickled in, the Moffitt scientists were gratified and relieved. Ahead of the trial, “we were, to be honest, terrified,” Gatenby says. The benefit of adaptive therapy appeared to be huge. Of the 11 men in the study, one left the trial after his disease spread, but most were living longer than expected without their cancer progressing. Men getting continuous dosing of Zytiga go a median of 16.5 months before the cancer becomes resistant to the drug and spreads. In comparison, the median time to progression for the men receiving adaptive therapy was at least 27 months. Moreover, they were on average using less than half of the standard amount of Zytiga. Joel Brown, an evolutionary ecologist and one of Gatenby's collaborators, said the team felt a moral obligation to get the word out: “The effect was so big that it would be unethical not to report it immediately,” he says.

    They published a report in 2017, far earlier than anticipated, to a generally positive reaction from prostate experts—particularly because it suggested a way that people with cancer might live longer with less medication. “If you can reduce side effects, I think that’s fantastic,” says Peter Nelson, an oncologist who studies prostate cancer at the Fred Hutchinson Cancer Research Center in Seattle. “Conceptually it’s a beautifully simple approach.” Jason Somarelli, a biologist at the Duke Cancer Institute, calls Gatenby a pioneer: “He’s turning cancer into a chronic disease.”

    Butler, who is 75, has gone for long periods off Zytiga—with stretches lasting as long as five months. “I’m now the poster boy, they say,” Butler says. He’s one of the best responders in the study.

    Some doctors are already trying adaptive therapy on patients outside of clinical trials. In 2017 a doctor in Oregon, inspired by Gatenby’s pilot study, started a prostate cancer patient on a modified version of the approach when he refused the standard continuous dosing. She has since started treating a second man using adaptive therapy. Other oncologists might be doing the same. It’s nearly impossible to know for sure, because adaptive therapy doesn’t require government approval. The protocol uses already-approved medications, and the US Food and Drug Administration doesn’t police specific dosing schedules.

    Experts urge caution, however. The prostate cancer study was very small, and without a randomly assigned control group the results aren’t truly reliable. While the majority of the men in the trial remain stable, four more saw their cancer progress since the paper came out. “This is an approach that now needs to be carefully studied in prospective clinical trials before it is adopted into clinical practice,” says Richard L. Schilsky, chief medical officer for the American Society of Clinical Oncology. Years could pass before a large-scale test of adaptive therapy takes place. Len Lichtenfeld, interim chief medical officer of the American Cancer Society, echoes Schilsky’s concerns. “Is it intriguing? Yes,” Lichtenfeld says. “But there is still a long way to go.”

    Gatenby agrees that adaptive therapy needs rigorous testing. He conveys a kind of humility you don’t see very often in the upper reaches of medical science. He told me multiple times that he is not an interesting subject to write about, and more than once I heard close colleagues mangle the pronunciation of his name (which is pronounced GATE-en-bee); apparently he had never corrected them. But when he believes in something, he doesn’t relent. And he believes in adaptive therapy. “He’s like a teddy bear, but underneath that soft exterior he’s made of steel,” says Athena Aktipis, who studies theoretical and cancer biology at Arizona State University and has collaborated with Gatenby.

    Late last year, Gatenby presented his work at a meeting of prostate cancer specialists. In the question and ­answer session afterward, an attendee shared his surprise at the results. “I guess what you’re saying is that we’ve been doing it wrong all these years,” the man mused, according to Gatenby. “I was literally speechless for a few moments,” Gatenby admits, “and then I said, ‘Well, yeah, I guess that’s what I’m saying.’” He is still dwelling on the exchange and wishes he could somehow find the man and apologize. He’s not taking back what he said; he does think the profession can do better. But, he says, “I should have been more diplomatic.”

    In 2016, a couple dozen researchers gathered in a conference room at an ultramodern genetic sequencing center along the banks of the River Cam, 9 miles outside of Cambridge, England. The gathering brought together experts to discuss how principles of ecology might apply to cancer. When they took a break, their idea of fun was to play a round of “Game of Clones,” in which a small group of scientists pretended to be cancer cells trying to persuade the maximal number of other researchers bouncing around the room to be their malignant clones.

    During this meeting, one overarching theme kept popping up: Evolution doesn’t operate the same way within all cancers. It’s not even clear that Darwinian natural selection always determines the genetic mutations that abound within a tumor. A study of colon cancer samples conducted by one of the conference attendees, Andrea Sottoriva of the Institute of Cancer Research in London, and Christina Curtis, a computational biologist at Stanford University, suggested a different pattern.

    When colorectal tumors begin to form, there seems to be a “big bang” of mutations. This initial explosion of cellular diversity in these colon cancers seems to be followed by a period in which random genetic changes arise and become more prevalent out of pure happenstance rather than because the mutations confer some sort of competitive advantage. It’s still unclear whether adaptive therapy, which operates on the assumption that there’s Darwinian competition between tumor cells, would work well for cancers where the mutations arise continuously by chance.

    Still, a kind of consensus emerged, and a year after the Cambridge meeting, the organizers published a statement outlining how cancers might be better classified. Twenty-two researchers—some of the biggest names in the field of evolutionary oncology, including Gatenby—coauthored the document.

    One important factor in the group’s suggested classification scheme is a measure of how swiftly a cancer is mutating. In the past decade, faster DNA sequencing tools have shown that Nowell—Gatenby’s old professor, the ­cigarette-smoking pioneer in applying evolutionary thinking to cancer—was prescient: Individual tumors often bristle with rapid-fire genetic changes. Rather than two or three initial errors setting off a chain of uncontrolled growth, many tumors are the result of several series of mutations. A significant experiment published in 2012 found at least 128 different DNA mutations in various kidney tumor samples from one patient, for instance. There's some evidence that the more mutations there are, the more aggressive a cancer tends to be, suggesting a higher chance that one of these DNA changes will confer tumor cells with the potential to be drug-resistant. Given technological advances, it’s not too far-fetched to think that within the coming decade, doctors will routinely measure the amount of mutations in their patients’ tumors.

    Today most cancers are assessed using a system that dates back to the 1940s. Doctors typically evaluate factors such as whether a cancer has spread to lymph nodes or beyond and on the basis of these attributes determine its “stage.” On one end of the spectrum are stage 1 cancers, which are relatively confined, while at the other end are stage 4 cancers, which have spread extensively. Crucially, this system of assigning cancer a stage doesn’t formally take a cancer’s genetic mutations into account.

    The suggested categorization system that grew out of the Cambridge meeting would look at cancer in a completely new way. Rather than four stages of cancer, the authors of the 2017 consensus statement propose no less than 16 different categories—for example, tumors that have slow cell turnover and a low rate of accumulating mutations, or tumors that are a hotbed of genetic diversity with quickly replicating cells competing for resources. This latter type of tumor might be the most likely to evolve a way to outcompete drug-sensitive cells in the body and thereby could, in some cases, be the most dangerous. A fast-­moving cancer of this kind might also be the best candidate for adaptive therapy.

    Around the time the consensus statement came out, Gatenby and his collaborators in Tampa were hard at work running cell experiments in a lab down the hall from his office. The goal was to prove a key tenet of adaptive therapy. Gatenby’s approach assumes that when treatment is removed, drug-resistant cancer cells will replicate more slowly than drug-sensitive cells. The theory rests on the assumption that those resistant cells need lots of energy to maintain their armor against the medication meant to kill them. During treatment breaks, the thinking goes, the fuel-hungry resistant cells are outcompeted by drug-­sensitive cells, which need fewer resources to thrive.

    To gather evidence for this idea, Gatenby’s research team placed human breast cancer cells with resistance to the drug doxorubicin in a petri dish alongside an equal-size population of doxorubicin-sensitive breast cancer cells and watched the two groups fight for resources. By day 10 the resistant cells made up only 20 percent of the cells in the dish and continued to slowly decline from there. At the end of the experiment, published last year, these resistant cells had dropped to around 10 percent of the total population.

    Granted, this experiment happened in a petri dish, not a human body—or even the body of a lab rat. Some leading cancer specialists agree with Gatenby that drug-­resistant cells are likely outcompeted by other cells when cancer medication is withdrawn. But, say others, what if Gatenby is wrong? What if resistant cells actually thrive during the period when the patient is taken off drugs? The risks are high. No one wants to hasten death.

    Rethinking cancer as a chronic illness requires a mental shift—a shift that other changes in cancer therapy might be easing. There’s a practice of letting cancer patients take doctor-supervised “drug holidays” from their medications, for instance. And we’ve adapted our thinking when it comes to medicine before. Doctors once thought that stress was the primary culprit behind ulcers, but biologists uncovered a bacterium as the main cause. More recently we’ve gotten used to the weird idea that trillions of bacteria live in our gut microbiome.

    Perhaps, then, it isn’t a huge stretch to think we might tolerate coexisting with cancer cells as long as we can prevent them from growing unchecked. Whereas Darwin put forth ideas about what has become known as macro­evolution—the rise and fall of species, whether they be beetles or bald eagles—this new view of cancer could be an example of what we might call “endo-­evolution”: natural selection playing out within an organism’s own tissues.

    The American Cancer Society acknowledges that some cancers are already managed as chronic illnesses. In certain cases, doctors simply try to keep the malignancies from spreading with new rounds of medication. Gatenby’s adaptive therapy aims to take the guesswork out of the treatment. More trials at Moffitt are in the planning stages or underway for cancers affecting the breast, skin and thyroid, in addition to a new, bigger trial in prostate cancer patients. Across the country, in Arizona, Athena Aktipis and her husband and scientific collaborator, Carlo Maley, have secured a grant to begin a breast cancer trial using adaptive therapy in conjunction with a local branch of the Mayo Clinic.

    But the idea of cancer as an implacable enemy that needs to be annihilated runs deep. Even Gatenby feels it, particularly when it comes to children. When his daughter was a teenager, one of her classmates died from a form of cancer called rhabdomyosarcoma. He never met his daughter’s friend but heard about his decline. Then, last year, a pediatric oncologist at Moffitt approached him to see if therapy inspired by evolutionary theory might work to fully weed out cancer from children newly diagnosed with that same disease. In the highest-risk group, that cancer kills as many as 80 percent of patients within five years.

    In October, they met to begin designing a study. This trial will use a more sophisticated evolutionary model to cycle patients on and off of several drugs. The hope is to deploy the additional drugs to kick the cancer while it’s down, and thereby drive it to extinction. It’s an ambitious goal.

    For now, Gatenby is most focused on managing advanced cancers in adults, and doing so as a chronic disease. In that sense, he’s challenging the words emblazoned on the outside wall of the Moffitt Cancer Center: “To contribute to the prevention and cure of cancer.” Robert Butler has pondered these words too, which he passes when walking into the building for checkups and treatments. “Certainly, in my case there’s no intention of cure. What we’re doing is control. So that’s not really the correct logo anymore, is it?” he says. Butler tells me about a time when he and some of the Moffitt researchers brainstormed alternative slogans. “We finally came up with ‘Our aim is to make you die of something else’—which I thought was lovely,” he adds. “It’s more true.”

    Robert Gatenby photographed at Everson Museum of Art

    Roxanne Khamsi (@rkhamsi) is a science writer living in New York and chief news editor of Nature Medicine.

    This article appears in the April issue. Subscribe now.

    Listen to this story, and other WIRED features, on the Audm app.

    Let us know what you think about this article. Submit a letter to the editor at mail@wired.com.


    Read more: https://www.wired.com/story/cancer-treatment-darwin-evolution/

    Read More

    Yes, bacon really is killing us

    The long read: Decades worth of research proves that chemicals used to make bacon do cause cancer. So how did the meat industry convince us it was safe?

    There was a little cafe I used to go to that did the best bacon sandwiches. They came in a soft and pillowy white bap. The bacon, thick-cut from a local butcher, was midway between crispy and chewy. Ketchup and HP sauce were served in miniature jars with the sandwich, so you could dab on the exact amount you liked. That was all there was to it: just bread and bacon and sauce. Eating one of these sandwiches, as I did every few weeks, with a cup of strong coffee, felt like an uncomplicated pleasure.

    And then, all of a sudden, the bacon sandwich stopped being quite so comforting. For a few weeks in October 2015, half the people I knew were talking about the news that eating bacon was now a proven cause of cancer. You couldnt miss the story: it was splashed large in every newspaper and all over the web. As one journalist wrote in Wired, Perhaps no two words together are more likely to set the internet aflame than BACON and CANCER. The BBC website announced, matter-of-factly, that Processed meats do cause cancer, while the Sun went with Banger out of Order and Killer in the Kitchen.

    The source of the story was an announcement from the World Health Organization that processed meats were now classified as a group 1 carcinogen, meaning scientists were certain that there was sufficient evidence that they caused cancer, particularly colon cancer. The warning applied not just to British bacon but to Italian salami, Spanish chorizo, German bratwurst and myriad other foods.

    Health scares are ten-a-penny, but this one was very hard to ignore. The WHO announcement came on advice from 22 cancer experts from 10 countries, who reviewed more than 400 studies on processed meat covering epidemiological data from hundreds of thousands of people. It was now possible to say that eat less processed meat, much like eat more vegetables, had become one of the very few absolutely incontrovertible pieces of evidence-based diet advice not simply another high-profile nutrition fad. As every news report highlighted, processed meat was now in a group of 120 proven carcinogens, alongside alcohol, asbestos and tobacco leading to a great many headlines blaring that bacon was as deadly as smoking.

    The WHO advised that consuming 50g of processed meat a day equivalent to just a couple of rashers of bacon or one hotdog would raise the risk of getting bowel cancer by 18% over a lifetime. (Eating larger amounts raises your risk more.) Learning that your own risk of cancer has increased from something like 5% to something like 6% may not be frightening enough to put you off bacon sandwiches for ever. But learning that consumption of processed meat causes an additional 34,000 worldwide cancer deaths a year is much more chilling. According to Cancer Research UK, if no one ate processed or red meat in Britain, there would be 8,800 fewer cases of cancer. (That is four times the number of people killed annually on Britains roads.)

    The news felt especially shocking because both ham and bacon are quintessentially British foods. Nearly a quarter of the adult population in Britain eats a ham sandwich for lunch on any given day, according to data from 2012 gathered by researchers Luke Yates and Alan Warde. To many consumers, bacon is not just a food; it is a repository of childhood memories, a totem of home. Surveys indicate that the smell of frying bacon is one of our favourite scents in the UK, along with cut grass and fresh bread. To be told that bacon had given millions of people cancer was a bit like finding out your granny had been secretly sprinkling arsenic on your morning toast.

    Vegetarians might point out that the bacon sandwich should never have been seen as comforting. It is certainly no comfort for the pigs, most of whom are kept in squalid, cramped conditions. But for the rest of us, it was alarming to be told that these beloved foods might be contributing to thousands of needless human deaths. In the weeks following news of the WHO report, sales of bacon and sausages fell dramatically. British supermarkets reported a 3m drop in sales in just a fortnight. (It was very detrimental, said Kirsty Adams, the product developer for meat at Marks and Spencer.)

    But just when it looked as if this may be #Bacongeddon (one of many agonised bacon-related hashtags trending in October 2015), a second wave of stories flooded in. Their message was: panic over. For one thing, the analogy between bacon and smoking was misleading. Smoking tobacco and eating processed meat are both dangerous, but not on the same scale. To put it in context, around 86% of lung cancers are linked to smoking, whereas it seems that just 21% of bowel cancers can be attributed to eating processed or red meat. A few weeks after publishing the report, the WHO issued a clarification insisting it was not telling consumers to stop eating processed meat.

    Meanwhile, the meat industry was busily insisting that there was nothing to see here. The North American Meat Institute, an industry lobby group, called the report dramatic and alarmist overreach. A whole tranche of articles insisted in a commonsense tone that it would be premature and foolish to ditch our meaty fry-ups just because of a little cancer scare.

    Nearly three years on, it feels like business as usual for processed meats. Many of us seem to have got over our initial sense of alarm. Sales of bacon in the UK are buoyant, having risen 5% in the two years up to mid-2016. When I interviewed a product developer for Sainsburys supermarket last year, she said that one of the quickest ways to get British consumers to try a new product now was to add chorizo to it.

    And yet the evidence linking bacon to cancer is stronger than ever. In January, a new large-scale study using data from 262,195 British women suggested that consuming just 9g of bacon a day less than a rasher could significantly raise the risk of developing breast cancer later in life. The studys lead author, Jill Pell from the Institute of Health and Wellbeing at Glasgow University, told me that while it can be counterproductive to push for total abstinence, the scientific evidence suggests it would be misleading for health authorities to set any safe dose for processed meat other than zero.

    The real scandal of bacon, however, is that it didnt have to be anything like so damaging to our health. The part of the story we havent been told including by the WHO is that there were always other ways to manufacture these products that would make them significantly less carcinogenic. The fact that this is so little known is tribute to the power of the meat industry, which has for the past 40 years been engaged in a campaign of cover-ups and misdirection to rival the dirty tricks of Big Tobacco.


    How do you choose a pack of bacon in a shop, assuming you are a meat eater? First, you opt for either the crispy fat of streaky or the leanness of back. Then you decide between smoked or unsmoked each version has its passionate defenders (I am of the unsmoked persuasion). Maybe you seek out a packet made from free-range or organic meat, or maybe your budget is squeezed and you search for any bacon on special offer. Either way, before you put the pack in your basket, you have one last look, to check if the meat is pink enough.

    Since we eat with our eyes, the main way we judge the quality of cured meats is pinkness. Yet it is this very colour that we should be suspicious of, as the French journalist Guillaume Coudray explains in a book published in France last year called Cochonneries, a word that means both piggeries and rubbish or junk food. The subtitle is How Charcuterie Became a Poison. Cochonneries reads like a crime novel, in which the processed meat industry is the perpetrator and ordinary consumers are the victims.

    The pinkness of bacon or cooked ham, or salami is a sign that it has been treated with chemicals, more specifically with nitrates and nitrites. It is the use of these chemicals that is widely believed to be the reason why processed meat is much more carcinogenic than unprocessed meat. Coudray argues that we should speak not of processed meat but nitro-meat.

    Parma
    Prosciutto di Parma has been produced without nitrates since 1993. Photograph: Stefano Rellandini/Reuters

    Pure insane crazy madness is how Coudray described the continuing use of nitrates and nitrites in processed meats, in an email to me. The madness, in his view, is that it is possible to make bacon and ham in ways that would be less carcinogenic. The most basic way to cure any meat is to salt it either with a dry salt rub or a wet brine and to wait for time to do the rest. Coudray notes that ham and bacon manufacturers claim this old-fashioned way of curing isnt safe. But the real reason they reject it is cost: it takes much longer for processed meats to develop their flavour this way, which cuts into profits.

    There is much confusion about what processed meat actually means, a confusion encouraged by the bacon industry, which benefits from us thinking there is no difference between a freshly minced lamb kofta and a pizza smothered in nitrate-cured pepperoni. Technically, processed meat means pork or beef that has been salted and cured, with or without smoking. A fresh pound of beef mince isnt processed. A hard stick of cured salami is.

    The health risk of bacon is largely to do with two food additives: potassium nitrate (also known as saltpetre) and sodium nitrite. It is these that give salamis, bacons and cooked hams their alluring pink colour. Saltpetre sometimes called sal prunella has been used in some recipes for salted meats since ancient times. As Jane Grigson explains in Charcuterie and French Pork Cookery, saltpetre was traditionally used when brining hams to give them an attractive rosy appearance when otherwise it would be a murky greyish brown.

    In earlier centuries, bacon-makers who used saltpetre did not understand that it converts to nitrite as the meat cures. It is this nitrite that allows the bacteria responsible for cured flavour to emerge quicker, by inhibiting the growth of other bacteria. But in the early 20th century, the meat industry found that the production of cured meats could be streamlined by adding sodium nitrite to the pork in pure form. In trade journals of the 1960s, the firms who sold nitrite powders to ham-makers spoke quite openly about how the main advantage was to increase profit margins by speeding up production. One French brand of sodium nitrite from the 60s was called Vitorose or quick-pink.

    Nitro-chemicals have been less of a boon to consumers. In and of themselves, these chemicals are not carcinogenic. After all, nitrate is naturally present in many green vegetables, including celery and spinach, something that bacon manufacturers often jubilantly point out. As one British bacon-maker told me, Theres nitrate in lettuce and no one is telling us not to eat that!

    But something different happens when nitrates are used in meat processing. When nitrates interact with certain components in red meat (haem iron, amines and amides), they form N-nitroso compounds, which cause cancer. The best known of these compounds is nitrosamine. This, as Guillaume Coudray explained to me in an email, is known to be carcinogenic even at a very low dose. Any time someone eats bacon, ham or other processed meat, their gut receives a dose of nitrosamines, which damage the cells in the lining of the bowel, and can lead to cancer.

    You would not know it from the way bacon is sold, but scientists have known nitrosamines are carcinogenic for a very long time. More than 60 years ago, in 1956, two British researchers called Peter Magee and John Barnes found that when rats were fed dimethyl nitrosamine, they developed malignant liver tumours. By the 1970s, animal studies showed that small, repeated doses of nitrosamines and nitrosamides exactly the kind of regular dose a person might have when eating a daily breakfast of bacon were found to cause tumours in many organs including the liver, stomach, oesophagus, intestines, bladder, brain, lungs and kidneys.

    Just because something is a carcinogen in rats and other mammals does not mean it will cause cancer in humans, but as far back as 1976, cancer scientist William Lijinsky argued that we must assume that these N-nitroso compounds found in meats such as bacon were also carcinogens for man. In the years since, researchers have gathered a massive body of evidence to lend weight to that assumption. In 1994, to take just one paper among hundreds on nitrosamines and cancer, two American epidemiologists found that eating hotdogs one or more times a week was associated with higher rates of childhood brain cancer, particularly for children who also had few vitamins in their diets.

    In 1993, Parma ham producers in Italy made a collective decision to remove nitrates from their products and revert to using only salt, as in the old days. For the past 25 years, no nitrates or nitrites have been used in any Prosciutto di Parma. Even without nitrate or nitrite, the Parma ham stays a deep rosy-pink colour. We now know that the colour in Parma ham is totally harmless, a result of the enzyme reactions during the hams 18-month ageing process.

    Slow-cured, nitrate-free, artisan hams are one thing, but what about mass-market meats? Eighteen months would be a long time to wait on hotdogs, as the food science expert Harold McGee comments. But there have always been recipes for nitrate-free bacon using nothing but salt and herbs. John Gower of Quiet Waters Farm, a pork producer who advises many British manufacturers of cured meats, confirms that nitrate is not a necessary ingredient in bacon: Its generally accepted that solid muscle products, as opposed to chopped meat products like salami, dont require the addition of nitrate for safety reasons.

    Bacon is proof, if it were needed, that we cling to old comforts long after they have been proven harmful. The attachment of producers to nitrates in bacon is mostly cultural, says Gower. Bacon cured by traditional methods without nitrates and nitrites will lack what Gower calls that hard-to-define tang, that delicious almost metallic taste that makes bacon taste of bacon to British consumers. Bacon without nitrates, says Gower, is nothing but salt pork.

    Given the harm of nitro-meat has been known for so long, the obvious question is why more has not been done to protect us from it. Corinna Hawkes, a professor of Food Policy at City University in London, has been predicting for years that processed meats will be the next sugar a food so harmful that there will be demands for government agencies to step in and protect us. Some day soon, Hawkes believes, consumers will finally wake up to the clear links between cancer and processed meat and say Why didnt someone tell me about this?


    The most amazing thing about the bacon panic of 2015 was that it took so long for official public health advice to turn against processed meat. It could have happened 40 years earlier. The only time that the processed meat industry has looked seriously vulnerable was during the 1970s, a decade that saw the so-called war on nitrates in the US. In an era of Ralph Nader-style consumer activism, there was a gathering mood in favour of protecting shoppers against bacon which one prominent public health scientist called the most dangerous food in the supermarket. In 1973, Leo Freedman, the chief toxicologist of the US Food and Drug Administration, confirmed to the New York Times that nitrosamines are a carcinogen for humans although he also mentioned that he liked bacon as well as anybody.

    The US meat industry realised it had to act fast to protect bacon against the cancer charge. The first attempts to fight back were simply to ridicule the scientists for over-reacting. In a 1975 article titled Factual look at bacon scare, Farmers Weekly insisted that a medium-weight man would have to consume more than 11 tonnes of bacon every single day to run the faintest risk of cancer. This was an outrageous fabrication.

    But soon the meat lobby came up with a cleverer form of diversion. The AMI the American Meat Institute started to make the argument that the nitrate was only there for the consumers own safety, to ward off botulism a potentially fatal toxin sometimes produced by poorly preserved foods. The scientific director of the AMI argued that a single cup of botulism would be enough to wipe out every human on the planet. So, far from harming lives, bacon was actually saving them.

    In 1977, the FDA and the US Department of Agriculture gave the meat industry three months to prove that nitrate and nitrite in bacon caused no harm. Without a satisfactory response, Coudray writes, these additives would have to be replaced 36 months later with non-carcinogenic methods. The meat industry could not prove that nitrosamines were not carcinogenic because it was already known that they were. Instead, the argument was made that nitrates and nitrites were utterly essential for the making of bacon, because without them bacon would cause thousands of deaths from botulism. In 1978, in response to the FDAs challenge, Richard Lyng, director of the AMI, argued that nitrites are to processed meat as yeast is to bread.

    The meat industrys tactics in defending bacon have been right out of the tobacco industrys playbook, according to Marion Nestle, professor of nutrition and food studies at New York University. The first move is: attack the science. By the 1980s, the AMI was financing a group of scientists based at the University of Wisconsin. These meat researchers published a stream of articles casting doubt on the harmfulness of nitrates and exaggerating the risk from botulism of non-nitrated hams.

    Does making ham without nitrite lead to botulism? If so, it is a little strange that in the 25 years that Parma ham has been made without nitrites, there has not been a single case of botulism associated with it. Almost all the cases of botulism from preserved food which are extremely rare have been the result of imperfectly preserved vegetables, such as bottled green beans, peas and mushrooms. The botulism argument was a smokescreen. The more that consumers could be made to feel that the harmfulness of nitrate and nitrite in bacon and ham was still a matter of debate, the more they could be encouraged to calm down and keep buying bacon.

    A
    A bacon sandwich at a diner in Michigan. Photograph: Molly Riley/Reuters

    The botulism pretext was very effective. The AMI managed to get the FDA to keep delaying its three-month ultimatum on nitrites until a new FDA commissioner was appointed in 1980 one more sympathetic to hotdogs. The nitrite ban was shelved. The only concession the industry had made was to limit the percentage of nitrites added to processed meat and to agree to add vitamin C, which would supposedly mitigate the formation of nitrosamines, although it does nothing to prevent the formation of another known carcinogen, nitrosyl-haem.

    Over the years, the messages challenging the dangers of bacon have become ever more outlandish. An explainer article by the Meat Science and Muscle Biology lab at the University of Wisconsin argues that sodium nitrite is in fact critical for maintaining human health by controlling blood pressure, preventing memory loss, and accelerating wound healing. A French meat industry website, info-nitrites.fr, argues that the use of the right dose of nitrites in ham guarantees healthy and safe products, and insists that ham is an excellent food for children.

    The bacon lobby has also found surprising allies among the natural foods brigade. Type nitrate cancer bacon into Google, and you will find a number of healthy eating articles, some of them written by advocates of the Paleo diet, arguing that bacon is actually a much-maligned health food. The writers often mention that vegetables are the primary source of nitrates, and that human saliva is high in nitrite. One widely shared article claims that giving up bacon would be as absurd as attempting to stop swallowing. Out of the mass of stuff on the internet defending the healthiness of bacon, it can be hard to tell which writers have fallen under the sway of the meat lobby, and which are simply clueless nutrition experts who dont know any better.

    Either way, this misinformation has the potential to make thousands of people unwell. The mystifying part is why the rest of us have been so willing to accept the cover-up.


    Our deepening knowledge of its harm has done very little to damage the comforting cultural associations of bacon. While I was researching this article, I felt a rising disgust at the repeated dishonesty of the processed meat industry. I thought about hospital wards and the horrible pain and indignity of bowel cancer. But then I remembered being in the kitchen with my father as a child on a Sunday morning, watching him fry bacon. When all the bacon was cooked, he would take a few squares of bread and fry them in the meaty fat until they had soaked up all its goodness.

    In theory, our habit of eating salted and cured meats should have died out as soon as home refrigerators became widespread in the mid-20th century. But tastes in food are seldom rational, and millions of us are still hooked on the salty, smoky, umami savour of sizzling bacon.

    We are sentimental about bacon in a way we never were with cigarettes, and this stops us from thinking straight. The widespread willingness to forgive pink, nitrated bacon for causing cancer illustrates how torn we feel when something beloved in our culture is proven to be detrimental to health. Our brains cant cope with the horrid feeling that bacon is not what we thought it was, and so we turn our anger outwards to the health gurus warning us of its hazards. The reaction of many consumers to the WHO report of 2015 was: hands off my bacon!

    In 2010, the EU considered banning the use of nitrates in organic meats. Perhaps surprisingly, the British organic bacon industry vigorously opposed the proposed nitrates ban. Richard Jacobs, the late chief executive of Organic Farmers & Growers, an industry body, said that prohibiting nitrate and nitrite would have meant the collapse of a growing market for organic bacon.

    Organic bacon produced with nitrates sounds like a contradiction in terms, given that most consumers of organic food buy it out of concerns for food safety. Having gone to the trouble of rearing pigs using free-range methods and giving them only organic feed, why would you then cure the meat in ways that make it carcinogenic? In Denmark, all organic bacon is nitrate-free. But the UK organic industry insisted that British shoppers would be unlikely to accept bacon that was greyish.

    Then again, the slowness of consumers to lose our faith in pink bacon may partly be a response to the confusing way that the health message has been communicated to us. When it comes to processed meat, we have been misled not just by wild exaggerations of the food industry but by the caution of science.

    On the WHO website, the harmfulness of nitrite-treated meats is explained so opaquely you could miss it altogether. In the middle of a paragraph on what makes red meat and processed meat increase the risk of cancer, it says: For instance, carcinogenic chemicals that form during meat processing include N-nitroso compounds. What this means, in plain English, is that nitrites make bacon more carcinogenic. But instead of spelling this out, the WHO moves swiftly on to the question of how both red and processed meats might cause cancer, after adding that it is not yet fully understood how cancer risk is increased.

    The
    The typical British sausage does not fall into the processed meat category. Photograph: Julian Smith/AAP

    This caution has kept us as consumers unnecessarily in the dark. Consider sausages. For years, I believed that the unhealthiest part in a cooked English breakfast was the sausage, rather than the bacon. Before I started to research this article, Id have sworn that sausages fell squarely into the processed meat category. They are wrongly listed as such on the NHS website.

    But the average British sausage as opposed to a hard sausage like a French saucisson is not cured, being made of nothing but fresh meat, breadcrumbs, herbs, salt and E223, a preservative that is non-carcinogenic. After much questioning, two expert spokespeople for the US National Cancer Institute confirmed to me that one might consider fresh sausages to be red meat and not processed meat, and thus only a probable carcinogen. (To me, the fact that most sausages are not processed meat was deeply cheering, and set me dancing around the kitchen with glee thinking about toad in the hole.)

    In general, if you ask a cancer scientist to distinguish between the risks of eating different types of meat, they become understandably cagey. The two experts at the National Cancer Institute told me that meats containing nitrites and nitrates have consistently been associated with increased risk of colon cancer in human studies. But they added that it is difficult to separate nitrosamines from other possible carcinogens that may be present in processed meats like bacon. These other suspects include haem iron a substance that is abundant in all red meat, processed or not and heterocyclic amines: chemicals that form in meat during cooking. A piece of crispy, overcooked bacon will contain multiple carcinogens, and not all are due to the nitrates.

    The problem with this reasoning, as I see it, is that it cant account for why processed meat is so much more closely linked to cancer than cooked red meat. For that, there remains no plausible explanation except for nitrates and nitrites. But looking for clear confirmation of this in the data is tricky, given that humans do not eat in labs under clinical observation.

    Most of what we know about processed meat and cancer in humans comes from epidemiology the study of disease across whole populations. But epidemiologists do not ask the kind of detailed questions about food that the people who eat that food may like answers to. The epidemiological data based on surveys of what people eat is now devastatingly clear that diets high in processed meats lead to a higher incidence of cancer. But it cant tell us how or why or which meats are the best or worst. As Corinna Hawkes of City University comments, The researchers dont ask you if you are eating artisanal charcuterie from the local Italian deli or the cheapest hotdogs on the planet.

    I would love to see data comparing the cancer risk of eating nitrate-free Parma ham with that of traditional bacon, but no epidemiologist has yet done such a study. The closest anyone has come was a French study from 2015, which found that consumption of nitrosylated haem iron as found in processed meats had a more direct association with colon cancer than the haem iron that is present in fresh red meat.

    It may be possible that epidemiologists have not asked people more detailed questions about what kind of processed meats they eat because they assume there is no mass-market alternative to bacon made without nitrates or nitrites. But this is about to change.


    The technology now exists to make the pink meats we love in a less damaging form, which raises the question of why the old kind is still so freely sold. Ever since the war on nitrates of the 1970s, US consumers have been more savvy about nitrates than those in Europe, and there is a lot of nitrate-free bacon on the market. The trouble, as Jill Pell remarks, is that most of the bacon labelled as nitrate-free in the US isnt nitrate-free. Its made with nitrates taken from celery extract, which may be natural, but produces exactly the same N-nitroso compounds in the meat. Under EU regulation, this bacon would not be allowed to be labelled nitrate-free.

    Its the worst con Ive ever seen in my entire life, says Denis Lynn, the chair of Finnebrogue Artisan, a Northern Irish company that makes sausages for many UK supermarkets, including Marks & Spencer. For years, Lynn had been hoping to diversify into bacon and ham but, he says, I wasnt going to do it until we found a way to do it without nitrates.

    When Lynn heard about a new process, developed in Spain, for making perfectly pink, nitrate-free bacon, he assumed it was another blind alley. In 2009, Juan de Dios Hernandez Canovas, a food scientist and the head of the food tech company Prosur, found that if he added certain fruit extracts to fresh pork, it stayed pink for a surprisingly long time.

    In January 2018, Finnebrogue used this technology to launch genuinely nitrate-free bacon and ham in the UK. It is sold in Sainsburys and Waitrose as Naked Bacon and Naked Ham, and in M&S as made without nitrites. Kirsty Adams, who oversaw its launch at M&S, explains that its not really cured. Its more like a fresh salted pork injected with a fruit and vegetable extract, and is more perishable than an old-fashioned flitch of bacon but that doesnt matter, given that it is kept in a fridge. Because it is quick to produce, this is much more economically viable to make than some of the other nitrate-free options, such as slow-cured Parma ham. The bacon currently sells in Waitrose for 3 a pack, which is not the cheapest, but not prohibitive either.

    I tried some of the Finnebrogue bacon from M&S. The back bacon tasted pleasant and mild, with a slight fruitiness. It didnt have the toothsome texture or smoky depth of a rasher of butchers dry-cured bacon, but Id happily buy it again as an alternative to nitro-meat. None of my family noticed the difference in a spaghetti amatriciana.

    Nitrite-free bacon still sounds a bit fancy and niche, but there shouldnt be anything niche about the desire to eat food that doesnt raise your risk of cancer. Lynn says that when he first approached Prosur about the fruit extract, he asked how much they had sold to the other big bacon manufacturers during the two years they had been offering it in the UK. The answer was none. None of the big guys wanted to take it, claims Lynn. They said: It will make our other processed meats look dodgy.

    But it also remains to be seen how much consumer demand there will be for nitrite- or nitrate-free bacon. For all the noise about bacon and cancer, it isnt easy to disentangle at a personal level just what kind of risk we are at when we eat a bacon sandwich. OK, so 34,000 people may die each year because of processed meat in their diet, but the odds are that it wont be you. I asked a series of cancer scientists whether they personally ate processed meat, and they all gave slightly different answers. Jill Pell said she was mostly vegetarian and ate processed meats very rarely. But when I asked Fabrice Pierre, a French expert on colon cancer and meat, if he eats ham, he replied: Yes, of course. But with vegetables at the same meal. (Pierres research at the Toxalim lab has shown him that some of the carcinogenic effects of ham can be offset by eating vegetables.)

    Our endless doubt and confusion about what we should be eating have been a gift to the bacon industry. The cover-up about the harm of meat cured with nitrates and nitrites has been helped along by the scepticism many of us feel about all diet advice. At the height of the great bacon scare of 2015, lots of intelligent voices were saying that it was safe to ignore the new classification of processed meats as carcinogenic, because you cant trust anything these nutritionists say. Meanwhile, millions of consumers of ham and bacon, many of them children, are left unprotected. Perhaps the most extraordinary thing about this controversy is how little public outrage it has generated. Despite everything, most of us still treat bacon as a dear old friend.

    In an ideal world, we would all be eating diets lower in meat, processed or otherwise, for the sake of sustainability and animal welfare as much as health. But in the world we actually live in, processed meats are still a normal, staple protein for millions of people who cant afford to swap a value pack of frying bacon for a few slivers of Prosciutto di Parma. Around half of all meat eaten in developed countries is now processed, according to researcher John Kearney, making it a far more universal habit than smoking.

    The real victims in all this are not people like me who enjoy the occasional bacon-on-sourdough in a hipster cafe. The people who will be worst affected are those many on low incomes for whom the cancer risk from bacon is compounded by other risk factors such as eating low-fibre diets with few vegetables or wholegrains. In his book, Coudray points out that in coming years, millions more poor consumers will be affected by preventable colon cancer, as westernised processed meats conquer the developing world.

    Last month, Michele Rivasi, a French MEP, launched a campaign in collaboration with Coudray demanding a ban of nitrites from all meat products across Europe. Given how vigorously the bacon industry has fought its corner thus far, a total ban on nitrites looks unlikely.

    But there are other things that could be done about the risk of nitrites and nitrates in bacon, short of an absolute veto. Better information would be a start. As Corinna Hawkes points out, it is surprising that there hasnt been more of an effort from government to inform people about the risks of eating ham and bacon, perhaps through warning labels on processed meats. But where is the British politician brave enough to cast doubt on bacon?

    Follow the Long Read on Twitter at @gdnlongread, or sign up to the long read weekly email here.

    Read more: https://www.theguardian.com/news/2018/mar/01/bacon-cancer-processed-meats-nitrates-nitrites-sausages

    Read More

    Major Breakthrough: Scientists At MIT Have Trapped Cancer Underneath A Bowl

    Well, this is officially the best news you’ll read all day! After decades of research, we’re officially closer than ever to finding a cure for one of the most deadly disease on earth: Scientists at MIT have made a major medical breakthrough and have trapped cancer underneath a bowl!

    So much yes! This could be the end of cancer as we know it!

    The miraculous development was reportedly made last week, when five scientists in MIT’s Koch Institute for Integrative Cancer Research stood together and corralled cancer into a corner while one of their colleagues ran to the kitchen to get a bowl to trap it with. After finding an empty glass tupperware that one had brought their lunch in a few days prior, they stuck it over cancer and held it firmly in place.

    While there’s some disagreement in the scientific community about whether cancer should be squished or just left alone and starved to death, scientists unanimously agree that this is the first step toward eradicating the deadly disease!

    This is huge.

    “Now that we have trapped cancer under a bowl, we’ve taken every precaution to prevent its escape,” said Dr. Michael Walden, lead researcher of the MIT lab, who emphasized that cancer had tried to get out through a crack in the bottom but could not. “My colleague currently has his foot firmly on top of the bowl, and as soon as we find something heavy to put on top of the bowl, like a brick or a big book or something, he can take his foot off.”

    Wow, this incredible breakthrough is going to change the lives of so many people affected by this terrible disease. Now that cancer is trapped, let’s just hope that scientists can slide a piece of paper underneath the bowl, flip it over, and get the lid on before it escapes so they can keep cancer there for good!

    Read more: http://www.clickhole.com/article/major-breakthrough-scientists-mit-have-trapped-can-6824

    Read More